اولویت بندی مناطق منشا سیلاب در حوضه سد درونگر با استفاده از مدل سازی هیدرولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد آبخیزداری، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

سیلاب‌های حاصل از رگیار یکی از مهمترین مخاطرات طبیعی حوضه های آبخیز کشور است که همه ساله خسارات زیادی به بخش‌های مختلف وارد می-کند از این رو، برنامه ریزی و مهار سیلاب برای کاهش خطرات احتمالی از اولویت‌های ویژه محسوب می‌شود. از جمله اقداماتی که برای کاهش خطر سیلاب مطرح است، مهار سیل در مناطق منشاء سیلاب است.. هدف اصلی این پژوهش تعیین مناطق منشاء سیلاب در مقیاس زیرحوضه در حوضه آبخیز سد درونگر در استان خراسان رضوی است که با استفاده از مدل ModClark در مدل HEC-HMS انجام شد. برای این منظور ورودی‌های مدل با نرم افزار ArcGIS استخراج شد و سپس مدل با 6 واقعه رگبار و آبنمود متناظر واسنجی و اعتبارسنجی شد. در مرحله بعد‌، به منظور تعیین مناطق منشاء سیلاب رگیار‌های با دوره بازگشت‌های 10، 25 و 50 سال به مدل وارد شد و با استفاده از شش شاخص سیل‌خیزی، زیرحوضه‌های مختلف اولویت بندی شد. نتایج شبیه‌سازی مدل HEC-HMS با توجه به مقادیر NSE ( 797/0 تا 973/0)، RMSE (2/0 تا 4/0) و PBIAS ( 14/23- تا 94/13 درصد) دلالت بر کارایی مدل در محدوده مطلوب تا بسیار خوب دارد. نتایج اولویت ‌بندی برای دوره بازگشت‌های مختلف نیز متفاوت بود اما در مجموع اختلاف، معنی دار نبود. در دوره بازگشت 25 سال زیرحوضه‌های 53، 9و 56 بیشترین مشارکت در دبی اوج حوضه و در دوره بازگشت 50 سال زیرحوضه‌های 53، 66و 37 بیشترین مشارکت را داشته‌اند. زیرحوضه های 66، 56، 53، 52، 67، 71 و 9 بر اساس هر 6 شاخص مورد بررسی در طبقه بسیار سیل خیز قرار گرفته اند که می‌تواند به عنوان زیرحوضه‌های منتخب در برنامه‌های کنترل سیلاب حوضه مد نظر قرار بگیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Prioritization of flood source areas in Darongar Dam basin using hydrological modeling

نویسندگان [English]

  • Erfan Mahmoodi 1
  • Mahmood Azari 2
  • Mohammad Taghi Dastorani 3
1 MSc. Student of Watershed Management, /Department of Rangeland and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad
2 Assistant Professor,/Department of Range and Watershed management, College of Natural Resources and Environment, Ferdowsi University of Mashhad
3 Professor/ Department of Range and Watershed management, College of Natural Resources and Environment, Ferdowsi University of Mashhad
چکیده [English]

Introduction

Floods caused by rainstorm are one of the most important natural hazards in most watersheds of Iran and damage various sectors every year. Therefore, planning and flood control can reduce potential hazards. Flood control in flood source areas, is one measure to reduce floods and this is usually done most effectively through hydrological modeling. So far, different methods and models have been used to determine flood-prone areas, but the efficiency of these methods in different climatic and environmental conditions is unknown and requires further research. Therefore, the purpose of this study is to evaluate the efficiency of ModClark model in HEC-HMS software and determining flood source areas in Darungar dam watershed in Dargaz city of Khorasan Razavi province.

Materials and methods

In this research, spatial distributed hydrological ModClark model in the HEC-HMS was used. For this purpose, rainfall and runoff data of regional stations, digital elevation model (DEM) of the watershed, land use map, vegetation, and hydrological soil group maps were obtained from the regional offices.Tthe model inputs were extracted with ArcGIS software and HEC-GeoHMS . In this research, gridded curve number method for rainfall loss, ModClark method for rainfall-runoff, recession method for base flow and Lag method used for flood routing. In the next step, sensitivity analysis, calibration and validation of the model were performed using six rainfall-runoff events. Then the design rainfall in the return period of 10, 25 and 50 years were entered into the model. Then the contribution of each sub watershed in flood hydrograph in watershed outlet was determined by using Unit Flood Response method and Successive Single Sub watershed Elimination. Finally priority of each sub watershed in the flood peak discharge and flood volume at the main outlet, were determined.

Results and discussion

The results of sensitivity analysis for the selected parameters revealed that the parameters related to the curve number (curve number map and CNratio) had the highest sensitivity and the storage coefficient had the lowest sensitivity. Then the model was calibrated with sensitive parameters. The mean values of NSE, RMSE and PBIAS were 0.90, 0.27 and -3.36% for calibration events and 0.862, 0.35 and -7.71% for validation events, respectively. Thus, the efficiency of the model for flood prediction was confirmed. The prioritization results showed that for the return period of 25 years, sub watersheds of 53, 9 and 56 had the highest participation and sub watersheds of 44, 69 and 43 had the lowest participation in the outlet peak flow. In the 50 years return period, sub watersheds of 53, 66 and 37 had the highest participation and sub watersheds of 2, 43 and 44 had the lowest participation in the peak flow. Prioritization of sub watersheds based on flood volume criterion, shows more consistent results, so that the first three priorities in different return periods belong the sub watersheds of 53, 66 and 37. Despite some differences in prioritization by these two criteria, the spatial distribution of different degrees of flood risk is almost similar. Based on peak flow criterion, most of these sub watershed are located in the Center and based on volume criterion, they are mostly located in the Northwest of the watershed. Southern sub watershed in both criteria are classified as low-risk and safe sub watershed.

Conclusion

The overall study results for flood source areas, without considering the area of each sub watershed, indicated that in addition to the geological factors and vegetation, there is a direct relationship between the contribution to peak flood of sub watershed and their slope. The results of the sub watershed prioritization reveal that in the short return period, most sub watershed had little contribution in the outlet peak flow, but by increasing return period, sub watershed prioritization becomes more stable. Based on the results, it was concluded that size and location of the sub watersheds does not affect their contribution to flood peak and volume. The results of this study can be used in planning flood control operations in the study area. Since there are many methods to prioritize sub-basins in terms of flooding, it is recommended that prioritization be conducted with other methods and their results to introduce the best compare models.

Keywords: Watershed Prioritization, Flood potential, ModClark, Unit Flood Response, HEC-HMS

کلیدواژه‌ها [English]

  • Watershed Prioritization
  • Flood potential
  • ModClark
  • Unit Flood Response
  • HEC-HMS
  1. Afifi, M. E. 2020. Simulation of rainfall-runoff and flood potential using model HEC-HMS and Fuzzy Logic Case Study of Rudbal Watershed in Fars Province. Physical Geography Quarterly, 12(46), 111-127 (In Persian).
  2. Alizade, A. 2008. Principles of Applied Hydrology. University of Tehran Press, 437 pp. (In Persian).
  3. Azari, M., S. Sadeghi and A. Telvari. 2008. Contribution Determination of Jaghargh Watershed in Peak Flood and Runoff Volume for Flood Control Prioritization. Geography and Development Iranian Journal, 6(12), 199-212 (In Persian).
  4. Azari, H., A. Motakan., A. Shakiba and S. Pourali. 2009. Simulation and flood warning with hydrology models in GIS and precipitation estimation through remote sensing. Iranian Journal of Geology, 3(9), 39-51 (In Persian).
  5. Barbosa, J. H. S., A. L. T. Fernandes and A. D. Lima. 2019. The influence of spatial discretization on HEC-HMS modelling: a case study. International Journal of Hydrology, 3(5), 442-449.
  6. Beven K.J. 2000, Rainfall-Runoff modelling. The Primer. Wiley. 360.
  7. Bhatt, G. D., K., Sinha, P. K., Deka, and A. Kumar. 2014. Flood hazard and risk assessment in Chamoli district, Uttarakhand using satellite remote sensing and GIS techniques. International Journal of Innovative Research in Science, Engineering and Technology, 3(8): 9-18.
  8. Choudhari, K., B. Panigrahi, and J.C. Paul. 2014. Simulation of rainfall-runoff process using HEC-HMS model for Balijore Nala watershed, Odisha, India. International Journal of Geomatics and Geosciences, 2014, 5, 253-265.
  9. Ewen, J and G. Parkin. 1996. Validation of Catchment’s Models for Prediction Land Use and Climate Change Impacts. 1. Method, Journal of Hydrology (175) 583-564.
  10. Fathalizadeh, B., M. Abedini and M. Rajabi. 2020. Investigating the Causes and Hazards of flood in Zunuzchay Watershed Using HEC-HMS Hydrological Model and Fuzzy Logic. Quantitative Geomorphological Researches, 9(1), 134-155.
  11. Gharib, M., B. Motamedvaziri and H. Ahmadi. 2018. Providing a method for determining the flood producing regions based on the relationship between flooding index and morphometric. Journal of soil and water resources conservation, 7(4), 87-102 (In Persian).
  12. Gharib, M., B. Motamedvaziri., B. Ghermezcheshmeh and H. Ahmadi. 2018. Evaluation of ModClark model for simulating rainfall-runoff in Tangrah Watershed, Iran. Appl. Ecol. Environ. Res, 16, 1053-1068.
  13. Ghavidelfar, S., S. R. Alvankar and A. Razmkhah. 2011. Comparison of the lumped and quasi-distributed Clark runoff models in simulating flood hydrographs on a semi-arid watershed. Water resources management, 25(6), 1775-1790.
  14. Hydrological Modelling System (HEC-HMS) user`s Manual, Version 3.5. US Army Corps of Engineers, Hydrological Engineering Center, 2010.
  15. Hemmati, M., M. Shahnazi., H. Ahmadi and M. Salarjazi. 2017. Flood Peak Flow Simulation and Determination of Flood Source Area in the QARANQU Watershed Using Hydrological Mod-Clark Model and GIS. Irrigation and Water Engineering, 7(4), 65-80.
  16. Kazemi, R and J. Porhemmat, 2021. An Analysis of the factors Affecting Flooding Severity in Iran. Watershed Management Research Journal, 34(1), 59-73 (In Persian).
  17. Khosravi, K., B. T. Pham., K. Chapi., A. Shirzadi., H. Shahabi., I. Revhaug., I. Prakash, and D.T. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, 744-755.
  18. Mahdavi, M. 2013. Applied hydrology. Volume II, University of Tehran Press, 192 pp. (In Persian).
  19. Malik, S., S. C. Pal., I. Chowdhuri., R. Chakrabortty., P. Roy and B. Das. 2020. Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19, 100343.
  20. Mansouri, B and R. Pirmoradian. 2018. Evaluation and Comparison of Lumped and Semi-Distributed Rainfall-Runoff Models. Journal of Water and Sustainable Development, 5(2), 81-90 (In Persian).
  21. Memarian Khalilabad, H., M. Yousefi and A. Aghakhani Afshar, 2018. Identification of flooding source regions and investigating the impact of watershed management operations on the peak discharge (Case study: Bar watershed, Neyshabour, Iran). Journal of water and soil conservation (journal of agricultural sciences and natural resources), 25(1), 35-59 (In Persian).
  22. Ministry of Interior, National Report on Floods, March 2019 (In Persian).
  23. Osei, B. K., I. Ahenkorah., A. Ewusi and E. B. Fiadonu. 2021. Assessment of flood prone zones in the Tarkwa mining area of Ghana using a GIS-based approach. Environmental Challenges, 3, 100028.
  24. Parisay, Z., & Sheikh, V., & Ownegh, M., & Bahremand, A. (2014). Flood hazard zonation by combining Mod-Clark and HEC-RAS models in Bustan dam basin, Golestan province. Journal of water and soil (Agricultural sciences and technology), 28(4), 729-741 (In Persian).
  25. Peters, J. C. and D. J. Easton. 1996. Runoff Simulation Using Radar Rainfall Data. Water Resources Bulletin, 32(4), pp. 753-760.
  26. Pilgrim, D.H. and I. Cordery. 1975. Rainfall Temporal Patterns for Design Floods, J. Hydr. Div. Am. Soc. Civ. Eng. 101: 81-95.
  27. Rezaei, M., M. Vafakhah and B. Ghermezcheshmeh. 2016. Spatial variability of flood source areas using "Unit flood response" method in Khanmirza watershed. Watershed engineering and management, 8(2), 128-139 (In Persian).
  28. Rezaei, M., M. Vafakhah and B. Ghermezcheshmeh. 2017. Spatial variability of flood source areas using" unit flood response" method. European Water, (57), 43-48.
  29. Saghafian B., B. Ghermezcheshmeh and M. M. Kheirkhah. 2010. Iso-flood severity mapping: a new tool for distributed flood source identification, Natural Hazards, 55: 557–570.
  30. Saghafian, B and H. Farazjou. 2007. Prioritization of hydrologic units with respect to flood potential in Golestan dam river basin. Iranian journal of watershed management science and engineering, 1(1), 1-11 (In Persian).
  31. Saghafian, B and M. Khosroshahi. 2005. Unit response approach for priority determination of flood source areas. Journal of hydrologic engineering, 10(4), 270-277.
  32. Samanta, S., D.K. Pal,and B. Palsamanta. 2018. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Applied water science. 8(2): p. 66.
  33. Sharif, F. 2002. Analysis of past flood events in Iran. Second National Soil Erosion Seminar, Lorestan, Iran. (In Persian).
  34. Talebi, A., Z. Eslami and A. Abbasi. 2019. Comparing prioritization from flooding of sub-basins using HEC-HMS model and experimental methods in Eskandari Watershed. Watershed engineering and management, 11(2), 336-343 (In Persian).
  35. USACE, 2000. HEC-HMS Technical Manual, Hydrologic Engineering Center, Davis, CA, 187p.
  36. Zhao, G., B. Pang., Z. Xu., D. Peng and L. Xu. 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of The Total Environment, 659, 940-949.