تحلیل عملکرد مدل‌های ریزمقیاس‌نمایی فازی و SDSM در ارزیابی تغییرات اقلیمی تحت سناریوهای RCP در شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

2 دانشیار، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

3 استاد، دانشکده مهندسی، دانشگاه گوئلف، گوئلف، انتاریو، کانادا.

چکیده

اثرات تغییر اقلیم بر متغیرهای آب و هوایی، از جمله چالش‌های شهرهای بزرگ است. در این تحقیق، به دو هدف اصلی شامل ارزیابی متغیرهای اقلیمی شهر تهران تحت سناریوهای RCP در دوره 2040-2021 و تحلیل عملکرد منطق فازی در ریزمقیاس‌نمایی پرداخته شده است. بدین منظور از هشت مدل CMIP5 تحت سناریوهای RCP2.6، RCP4.5 و RCP8.5 استفاده گردید و هفت متغیر شامل دماهای متوسط، حداکثر و حداقل، بارش، رطوبت نسبی، سرعت متوسط باد و ساعات آفتابی ارزیابی شدند. با توجه به عدم‌قطعیت ناشی از‌ خروجی‌های متفاوت CMIP5، مقدار روزانه متغیرهای اقلیمی در آینده با استفاده از میانگین وزنی مدل‌ها (براساس توانایی‌شان در شبیه‌سازی دوره پایه 2018-1989) محاسبه گردید. به‌منظور ریزمقیاس‌نمایی خروجی‌های CMIP5، ضمن استفاده از مدل ریزمقیاس‌نمایی آماری (SDSM)، مدل ریزمقیاس‌نمایی فازی (FDSM) نیز تدوین شد. عملکرد مدل‌های ریزمقیاس‌نمایی، به‌وسیله شاخص‌های آماری R2، RMSE، NSE و MAE تحلیل گردید. نتایج شاخص‌های آماری و مقایسه مقادیر شبیه‌سازی‌شده توسط FDSM و SDSM، بیانگر عملکرد بالای هر دو مدل و قابلیت مناسب رویکرد فازی در ریزمقیاس‌نمایی متغیرهای اقلیمی شهر تهران است. همچنین، نتایج حاکی از عدم برتری مطلق یک مدل بر مدل دیگر ریزمقیاس‌نمایی است. اما با اختلاف اندکی، عملکرد FDSM برای دماهای متوسط، حداکثر و حداقل و عملکرد SDSM برای بارش، رطوبت نسبی، سرعت باد و ساعات آفتابی بهتر بود که به‌عنوان مدل‌های ریزمقیاس‌نمایی برتر انتخاب شدند. نتایج دوره آتی بیانگر روند صعودی تغییرات سالانه دمای متوسط، دمای حداکثر، بارش و سرعت باد است؛ به‌طوری‌که میانگین سالانه آ‌ن‌ها به ترتیب حداکثر 1.29Cو 1.57Cبرای RCP8.5 و 10 میلی‌متر برای RCP2.6 و 0.8 متر‌ بر ثانیه برای RCP8.5 افزایش می‌یابند. همچنین میانگین بلندمدت ماهانه دماهای متوسط و حداکثر برای هر سه سناریو، افزایش محسوسی در تابستان دارند. برای بارش، ثبات نسبی در تابستان و افزایش در زمستان و ابتدای بهار پیش‌بینی می‌گردد. اما تغییرات دمای حداقل، رطوبت نسبی و ساعات آفتابی، بیانگر ثبات نسبی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Performance analysis of SDSM and Fuzzy downscaling models in assessing climate change under the RCP scenarios in Tehran

نویسندگان [English]

  • Hossein Shakeri 1
  • Homayoun Motiee 2
  • Edward McBean 3
1 Ph.D. Candidate, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Associate Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
3 Professor, School of Engineering, University of Guelph, Guelph, Ontario, Canada.
چکیده [English]

INTRODUCTION

Climate change impacts on climate variables are among the challenges of large cities. In this regard, General Circulation Models (GCMs) are among the most reliable tools for assessment of the future climate variables. In 5th assessment report on climate change, the Intergovernmental Panel on Climate Change (IPCC) has applied the Coupled Model Intercomparison Project, Phase 5 (CMIP5) models. These models use scenarios called Representative Concentration Pathway (RCP). In current study, the assessment of the climate variables of Tehran, Iran, under climate change impacts was addressed. The preceding studies for Tehran show they need to be updated with newer scenarios and more downscaling models. Furthermore, there is merit in using more synoptic stations due to the vastness of Tehran. Given these findings, the current study focuses on two main objectives. The first objective is to assess the climate variables under the RCP scenarios in Tehran for 2021-2040. To this end, the eight CMIP5 models under RCP2.6, RCP4.5 and RCP8.5 were used. Accordingly, seven climate variables including mean Temperature (Tmean), maximum Temperature (Tmax), minimum Temperature (Tmin), precipitation, relative humidity, mean Wind speed (Wmean) and the sunshine hours were used and simulated for baseline period (1989-2018) and then assessed for future period. In the Second objective, for downscaling the CMIP5s, in addition to use of the Statistical DownScaling Model (SDSM), Fuzzy logic was also applied for downscaling. Accordingly, the Fuzzy DownScaling Model (FDSM) was generated and the performances of FDSM and SDSM were analyzed.

MATERIALS AND METHODS

In this study, to assess the Tehran climate variables under RCP scenarios, the multi-model ensemble were applied to reduce the CMIP5’s uncertainties. Accordingly, the eight CMIP5s including CanESM2, CNRM-CM5, CSIRO-Mk3.6, FGOALS-g2, GFDL-CM3, HadGEM2-ES, MIROC-ESM-CHEM and MPI-ESM-MR were used. Given the uncertainty caused by the different outputs of the eight CMIP5s, the weighted means of the models’ outputs were used to calculate the daily climate variables for future (according to the ability of the models in simulating the baseline period). For this purpose, first, the CMIP5s were downscaled. In this context, the SDSM software (version 5.3.5) was used and also FDSM was generated. Then the performances of FDSM and SDSM were analyzed. On this basis, the superior downscaling models were selected using the comparison of simulation results and the statistical indicators of R2, RMSE, NSE and MAE. Accordingly, the CMIP5’s outputs were downscaled using the superior downscaling models and then the daily values of each climate variable were calculated. In the calibration and validation of the downscaling models at baseline period, the predictors were selected from the daily data of the National Center for Environmental Prediction (NCEP) using correlation test in SDSM software. Furthermore, in developing the FDSM, the Fuzzy C-Means Clustering process was applied, to determine the Fuzzy Membership Functions and the relevant Fuzzy Rules. By using the structure obtained by clustering, the FDSM was built as a Mamdani Fuzzy Inference System. In this context, the FDSM was developed in MATLAB software using the trial and error process.

RESULTS AND DISCUSSION

By correlation test in SDSM software, the predictors were selected for the SDSM and FDSM models. Accordingly, the SDSM and FDSM were developed using the daily climate variable and the selected predictors. The performance analysis of both downscaling models (based on the statistical indicators of R2, RMSE, NSE and MAE and the comparison of simulation results in baseline period) demonstrate very good quality and performance for all the daily Tehran climate variables. Therefore, the Fuzzy approach has an appropriate capability in simulating and downscaling the climate variables. In addition, neither model has absolute superiority over the other in downscaling. However, it appears that with a slight margin, the FDSM had a better performance for Tmean, Tmax and Tmin, and SDSM had a better performance for precipitation, relative humidity, Wmean and the sunshine. Accordingly these models were chosen as the superior downscaling models. The results of future period show the increasing trend of annual changes in Tmean and Tmax, precipitation and the Wmean. The maximum increase of annual average in Tmean and Tmax and the Wmean among all scenarios will be in the order of 1.29oC, 1.57oC and 0.8m/s (for RCP8.5) and also the maximum increases of annual average precipitation will be 10mm (for RCP2.6). Furthermore, the month long-term averages of Tmean and Tmax in all three scenarios show significant increases in summer. For precipitation, relative stability in summer, and increases in winter and early spring are projected, but the changes in Tmin, relative humidity and sunshine indicate relative stability.

CONCLUSION

In this study, two main objectives including the assessment of the climate variables under the RCP scenarios in Tehran for 2021-2040 and also the performance analysis of Fuzzy logic in downscaling were addressed. The performance analysis of FDSM and SDSM demonstrated the high performance of both models and the appropriate ability of the Fuzzy approach in downscaling the Tehran climate variables. Therefore, taking the Fuzzy approach for downscaling has a technical justification. In this context, the application of the Mamdani Fuzzy Inference System and the Fuzzy C-Means Clustering increases the accuracy and quality of the results at different conditions. According to the results, the annual changes in Tmean, Tmax and the Wmean at all the three RCP scenarios will have an increasing trend, while precipitation will also (marginally) increase. However, the other variables will have a relative stability. From the point of view of monthly changes, there were noticeable increases in the long-term means of Tmean and Tmax in the future period during the months of July, August and September (i.e. summer season). As regards to precipitation, a relatively stable trend was observed in comparison with the baseline during the warm months of future period, but during winter and in particular at the beginning of the spring of the 2021–2040 period, there will be more precipitation at different months of the year than the 1989–2018 period.

کلیدواژه‌ها [English]

  • Climate change
  • CMIP5
  • SDSM
  • Fuzzy Downscaling
  • RCP
  1. Ahmadi M., Motamedvaziri B., Ahmadi H., Moeini A., Zehtabiyan G.R. 2019. Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modeling. Physics and Chemistry of the Earth, 114, 1-13. https://doi.org/10.1016/j.pce.2019.09.002.
  2. Ahmadzadeh Araji H., Wayayok A., Massah Bavani A., Amiri E., Abdullah A.F., Daneshian J., Teh CBS. 2018. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management, 205, 63-71. https://doi.org/10.1016/j.agwat.2018.04.023
  3. Aref M.A., Alijani B. 2018. Investigation of temperature and precipitation variations of Yazd-Ardakan basin with SDSM under the conditions of future climate change. Scientific Journal Management System, 8(1), 89-101, (In Persian). https://doi.org/10.29252/aridbiom.8.1.89.
  4. Ashofteh P.S., Haddad O.B., Mariño M.A. 2015. Risk Analysis of Water Demand for Agricultural Crops under Climate Change. Journal of Hydrologic Engineering, 20(4), 1-10. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001053.
  5. Asmat U., Athar H., Nabeel A., Latif M. 2018. An AOGCM based assessment of interseasonal variability in Pakistan. Climate Dynamics, 50(1-2), 349-373. https://doi.org/10.1007/s00382-017-3614-0.
  6. Bezdek J.C. 1981. Objective Function Clustering. In: Pattern Recognition with Fuzzy Objective Function Algorithms, Bezdek J.C. (ed.), Springer, Boston, Massachusetts, USA, pp. 43-93.
  7. Dorji S., Herath S., Mishra B.K. 2017. Future Climate of Colombo Downscaled with SDSM-Neural Network. Climate, 5(1), 1-11. https://doi.org/10.3390/cli5010024.
  8. Eskandari H., Borji M., Khosravi H., Mesbahzadeh T. 2017. Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth, 7(3), 905-915. https://doi.org/10.5194/se-7-905-2016.
  9. Fallah Ghalhari G.A., Yousefi H., Hosseinzadeh A., Alimardani M., Reyhani E. 2019. Assessment of Climate Change in Bojnourd Station in 2016-2050 using Downscaling Models LARS WG and SDSM. Iranian journal of Ecohydrology, 6(1), 99-109, (In Persian). https://doi.org/10.22059/ije.2018.265918.952.
  10. Francaviglia R., Soleimani A., Massah Bavani A. R., Hosseini S. M., Jafari M. 2020 Probability assessment of climate change impacts on soil organic carbon stocks in future periods: a case study in Hyrcanian forests (Northern Iran). European Journal of Forest Research, 139(1), 1-16. https://doi.org/10.1007/s10342-019-01228-9.
  11. Ghermezcheshmeh B., Ahmadi M. Evaluation of error and uncertainty in downscaling SDSM and ANN. Watershed Engineering and Management. 12(1), 340-350, (In Persian). https://doi.org/10.22092/ijwmse.2019.108294.1226.
  12. Goodarzi M., Fatehifar A. 2019. Flood risk zoning due to climate change under RCP 8.5 scenario using hydrologic model SWAT in Gis (Azarshahr basin). Journal of Applied researches in Geographical Sciences, 19(53), 99-117, (In Persian). https://doi.org/10.29252/jgs.19.53.99.
  13. Goodarzi M., Salahi B., Hosseini A. 2016. Performance Analysis of LARS-WG and SDSM Downscaling Models in Simulation of Climate Changes in Urmia Lake Basin. Iranian Jornal of Watershed Management Science & Engineering, 9(31), 11-23, (In Persian).
  14. Haji Hosseini R., Golian S., Yazdi J. 2020. Evaluation of data-driven models to downscale rainfall parameters from global climate models outputs: The case study of Latyan watershed. Journal of Water and Climate Change, 11(1), 200-216. https://doi.org/10.2166/wcc.2018.191.
  15. IPCC 2014. Climate Change 2014– Impacts, Adaptation and Vulnerability, Part A: Global and Sectoral Aspects. Working Group II Contribution to the IPCC Fifth Assessment Report. Cambridge University Press, Cambridge, UK.
  16. Jamshidi A., Yazdani-Chamzini A., Yakhchali S.H., Khaleghi S. 2013. Developing a new fuzzy inference system for pipeline risk assessment. Journal of loss prevention in the process industries, 26(1), 197-208. https://doi.org/10.1016/j.jlp.2012.10.010.
  17. Lotfi M., Kamali G. A., Meshkatee A. H., Varshavian V. 2020. Statistical downscaling of climate models projection of minimum temperature under RCP scenarios in Western of Iran. Journal of Agricultural Meteorology. 8(2), 3-13, (In Persian). https://doi.org/10.22125/agmj.2020.227415.1097.
  18. Mamdani E.H., Assilian S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2.
  19. Mansouri A., Aminnejad B., Ahmadi H. 2018. Investigating the Effect of Climate Change on Inflow Runoff into the Karun-4 Dam Based on IPCC's Fourth and Fifth Report. Journal of Water and Soil Science. 22(2), 345-359, (In Persian).
  20. Mehrazar A., Massah Bavani A., Mashal M., Rahimikhoob H. 2018. Assessment of Climate Change Impacts on Agriculture of the Hashtgerd Plain with Emphasis of AR5 Models Uncertainty. Irrigation Sciences and Engineering, 41(3), 45-59, (In Persian). https://doi.org/10.22055/JISE.2018.13747.
  21. Mesbahzadeh T., Mirakbari M., Mohseni Saravi M., Soleimani Sardoo F., Miglietta M. 2020. Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications. 27(1), 1-20. https://doi.org/10.1002/met.1856.
  22. Mirakbari M., Mesbahzadeh T., Mohseni Saravi M., Khosravi H., Mortezaie Farizhendi G. 2018. Performance of Series Model CMIP5 in Simulation and Projection of Climatic Variables of Rainfall, Temperature and Wind Speed (Case Study: Yazd). Physical Geography Research Quarterly, 50(3), 593-609, (In Persian). https://doi.org/10.22059/JPHGR.2018.248177.1007156.
  23. Monjezi M., Rezaei M. 2011. Developing a new fuzzy model to predict burden from rock geomechanical properties. Expert Systems with Applications, 38(8), 9266-9273. https://doi.org/10.1016/j.eswa.2011.01.029.
  24. Najafi R., Hessami Kermani M.R. 2017. Uncertainty Modeling of Statistical Downscaling to Assess Climate Change Impacts on Temperature and Precipitation. Water Resources Management, 31(6), 1843-1858. https://doi.org/10.1007/s11269-017-1615-8.
  25. Rezaee M., Nahtaj M., Moghadamniya A., Abkar A., Rezaee M. 2015. Comparison of Artificial Neural Network and SDSM Methods in the Downscaling of Annual Rainfall in the HadCM3 Modelling (Case study: Kerman, Ravar and Rabor). Journal of Water Resources Engineering, 8(24), 25-40, (In Persian).
  26. Shivam, Goyal M.K., Sarma A.K. 2017. Analysis of the change in temperature trends in Subansiri River basin for RCP scenarios using CMIP5 datasets. Theoretical and Applied Climatology, 129(3), 1175-1187. https://doi.org/10.1007/s00704-016-1842-6.
  27. Shrestha S., Anal A.K., Salam P.A., Van der Valk M. 2016. Managing water resources under climate uncertainty: Examples from Asia, Europe, Latin America, and Australia. Springer, Switzerland, pp. 45-64. https://doi.org/10.1007/978-3-319-10467-6.
  28. Sobhani B., Eslahi M., Babaeian I. 2017. Comparison of statistical downscaling in climate change models to simulate climate elements in Northwest Iran. Physical Geography Research Quarterly, 49(2), 301-325, (In Persian). https://doi.org/10.22059/JPHGR.2017.62847.
  29. Tiwari N., Sihag P., Kumar S., Ranjan S. 2020. Prediction of trapping efficiency of vortex tube ejector. ISH Journal of Hydraulic Engineering, 26(1), 59-67. https://doi.org/10.1080/09715010.2018.1441752.
  30. 2015. Sendai framework for disaster risk reduction 2015–2030. Proceedings of the 3rd United Nations World Conference on DRR. Sendai, Japan, pp. 14-18.
  31. Valikhan Anaraki M., Mousavi S.-F., Farzin S., Karami H., 2020. Introducing a Nonlinear Model Based on Hybrid Machine Learning for Modeling and Prediction of Precipitation and Comparison with SDSM Method (Cases Studies: Shahrekord, Barez, and Yasuj). Iranian Journal of Soil and Water Research. 51(2), 325-339, (In Persian). https://doi.org/10.22059/ijswr.2019.285141.668258.
  32. Wilby R.L., Dawson C.W., Barrow E.M. 2002. Sdsm-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157. https://doi.org/10.1016/S1364-8152(01)00060-3.
  33. Wilby R.L., Dawson C.W. 2013. The Statistical DownScaling Model: insights from one decade of application. International Journal of Climatology. 33(7), 1707-1719. https://doi.org/10.1002/joc.3544.
  34. Zadeh L.A. 1965. Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.