بررسی روند رخدادهای حدی بارشی استان خراسان جنوبی در اثر گرمایش جهانی (بازه اقلیمی: 1989-2018)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی ، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد هواشناسی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

3 استادیار ، پژوهشکده اقلیم شناسی و تغییر اقلیم، مشهد، ایران

4 استادیار، گروه آمار، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

تغییر اقلیم و روند افزایشی دمای کره زمین بر چگونگی رفتار رخدادهای حدی بارش و دما در مقیاس محلی و منطقه ای در اکثر نقاط کره زمین تاثیر گذاشته است. پاسخ این تاثیر، تغییراتی در فرکانس و شدت وقوع رخدادهای حدی بارشی در بیشتر مناطق دنیا است. به دلیل اثر مستقیم این رخداد ها بر منابع آبی کره زمین، مطالعه هر چه دقیق تر هر گونه تغییر رفتاری در این رخدادها در صدر اول مطالعات محققان علوم آب و هواشناسی قرار دارد. در این پژوهش داده های روزانه بارش 6 ایستگاه سینوپتیک فعال در استان خراسان جنوبی برای دوره 30ساله 1989-2018 مورد استفاده قرار گرفت. داده های سری های زمانی بارش پس از کنترل کیفیت، از نظر همگنی و یافتن نقاط شکست احتمالی، مورد آزمون قرار گرفت. در ادامه 11 شاخص حدی بارشی شامل 6 شاخص شدتی و 5 شاخص مدتی برای هریک از این ایستگاه ها محاسبه شد. سپس روندهای مشاهده شده در رخدادهای حدی بارشی تعیین شد و نهایتا برای بررسی تاثیر تغییر اقلیم، معناداری روند در شاخص ها به کمک آزمون من-کندال سنجیده شد. نتایج نشان داد در اکثر شاخص ها، روند کاهشی وجود دارد که مقدار این روند در شاخص های RX1day و RX5day(در بیرجند و نهبندان)،  R30mm(فردوس و نهبندان)، R10mm (بیرجند، نهبندان و بشرویه) و PRCPTOT (برای تمامی ایستگاه ها)؛ از لحاظ آماری معنادار است. علی رغم کاهش برای R20mm، SDII و R95p (بجز بشرویه در برخی شاخص ها)؛ رفتار این شاخص ها در هیچ کدام از ایستگاه ها معنادار نیست و در سایر شاخص ها روند کاهشی معنادار فقط در یک ایستگاه مشاهده شده است. در مجموع با  محاسبه روند رخدادهای حدی بارشی در ایستگاه‌های خراسان جنوبی، شاهد کاهش چشمگیر و معناداری در بارش سالانه در کل سطح استان و روزهایی با بارش بیشتر از 10 میلی متر، بیشترین مقدار بارش 1 روزه و نیز 5 روزه در نیمه شرقی استان در اثر تغییر اقلیم هستیم که لزوم مدیریت و برنامه ریزی هر چه بیشتر در جهت استفاده بهینه از منابع آبی موجود را می طلبد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Trend of extreme Precipitation Events South Khorasan province Due to Climate Change

نویسندگان [English]

  • Jamile Gholipour 1
  • Mohammad Mousavi bayegi 2
  • Iman Babaeian 3
  • Mehdi Jabbari Nooghabi 4
1 PhD Student, Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Prof. College of Agriculture ,Ferdowsi University of Mashhad,m Mashad Iran
3 Assistant Prof. CRI, Mashad, Iran
4 Assistant Prof. Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

 

Introduction

Climate change and global warming have affected extreme precipitation and temperature events at the local and regional scales in most parts of the globe. As a result, changes in the frequency and intensity of precipitation events occur in most parts of the world. Because of its direct effect on the water resources of the Earth, today it is necessary to detailed study on the behavior of these events. Therefore, the main objective of the present study is investigation of the homogeneity of rainfall data, determining the changes in extreme precipitation events in Khorasan South province and also calculation of the trends and statistical trends significancy of each of these indicators. The results of this study necessitate more management and planning for optimal use of available water resources. Today, with more than four decades of industrial rule over human societies, climate change, or global warming, has become a serious challenge to the planet's environment. The main reason is the intensification of human industrial activities. Increasing temperatures, melting polar ice, rising free water levels and irregularities in climate phenomena are the most important consequences of climate change. Due to the impact of climate change on a local and regional scale, support for climate change adaptation strategies and mitigating the adverse effects of this phenomenon has been considered today.

Materials and Methods

For this study, we used the long-term daily precipitation data in 6 active synoptic stations (Birjand, Nehbandan, Qaen, Boshruyeh, Ferdows and Tabas) in South Khorasan province between 1989-2018. Determination of the homogeneity/non homogeneity, finding the change points and adjusting the rainfall data time series were performed by using "RHtests-dlyPrcp" package, determination of trends observed in the extreme precipitation indices was done by using "RClimDex1.1" package and significancy test of the indices also was performed by Mann-Kendall nonparametric test and using the "trend" package in R software.
 Then, 11 extreme precipitation indicators were calculated for selected stations and trends in precipitation events were determined. Finally, to investigate the impact of climate change, the significances of the trends in the indicators was measured using the Mann-Kendall statistical test. These indicators were approved by the World Meteorological Organization(WMO). Overall, extreme precipitation indices are classified in two categories. A number of indicators are based on rainfall intensity per unit "mm or mm/days"(Contains 6 index: PRCPTOT, SDII, R99p/R95p, RX1day/RX5day) and others are based on duration of precipitation or number days of precipitation that are based per unit "days"(Contains 5 index: CWD, CDD, R1mm/R10mm/R20mm). To determine the significant trends in each of the 11 extreme precipitation indicators for each station, Mann Kendall confidence level was considered 95%. The test statistic more than +1.96 and less than -1.96 indicated a significant trend.

Results and Discussion

The results showed that in most of the indices there were a decreasing trend. This trends were statistically significant in RX1day and RX5day(in Birjand and Nehbandan), R30mm(Ferdows and Nehbandan), R10mm (Birjand, Nehbandan and Boshruyeh) and PRCPTOT (for all stations). Despite decreases for R20mm, SDII and R95p (except for some indices), the behavior of these indices were not significant in any stations and for other indices a significant decreasing trend was observed only in one station. Overall, by calculating trends in rainfall events at stations of South Khorasan province, there were a significant decrease in total annual precipitation across the entire province, and days with precipitation greater than 10 mm, 1-day and 5-day maximum precipitation in the eastern half of the province that is affected by climate change. Therefore, it requires more management and planning for the optimal use of available water resources.  

Conclusion

Global warming has caused disparities in the spatial distribution of rainfall and the changing behavior of rainfall events in south Khorasan stations over the last 30 years. The major changes in the indices show a decreasing trend. This decreasing trend is significant in some indicators. Most reductions are seen in the indicators RX1day, RX5day (Birjand and Nehbandan), R30mm (Ferdows and Nehbandan), R10mm (Birjand, Nehbandan and Boshruyeh) and PRCPTOT (for all stations). The south of the province is experiencing a significant decline in most of the indicators and is mostly affected by climate change, which requires more planning for efficient use of current water resources. The rest of the indices were either not significant (SDII, R99p and R20mm) or only significant at one station. So for the province, only a fraction of the changes in of extreme Precipitation Events are due to climate change.
 

کلیدواژه‌ها [English]

  • Change points
  • climate change
  • extreme precipitation events
  • Global warming
  • Mann-Kendall nonparametric test
  • Water resources
  1.  

    1. Abedini, E., Mousavi Baygi, M., Khashei Siuki, A & Selahvarzi, Y. (2020). Investigating the trend of extreme climatic events in South Khorasan province. Journal of Agricultural Meteorology Vol. 7, No. 2, Autumn & Winter 2020, pp. 55-66.
    2. Asfaw, A., Simane, B., Hassen, A & Bantider, A. (2018).Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia:A case study in Woleka sub-basin. Weather and Climate Extremes, 19: 29-41.
    3. Carter, T. R., M. Hulme and M. Lal. 2007. General guidelines on the use of scenario data for climate impact and adaptation assessment IPCC Report, Chapter 3, 15-37.
    4. Hardy, J.T. (2003). Climate Change: Causes, Effects, and Solutions. John Wiley & Sons, Ltd. 247 P. DOI:10.1002/joc.1225.
    5. Harrison, S., Mighall, T., Stainforth, D.A., Allen, P,. Macklin, M., Anderson, E., Knight, J., Mauquoy, D., Passmore, D., Rea, B., Spagnolo, M & Shannon, S. (2019). Uncertainty in geomorphological responses to climate change. Climatic Change, pp: 1-18, https://doi.org/10.1007/s10584-019-02520-8.
    6. Erfanian M., Ansari H., Alizadeh A., Banayan Aval, M. (2015). Assessment of climatic extreme events variations in Khorasan Razavi Province. Iranian journal of irrigation and drainage, Volume 8, Number 4; Page(s) 817- 825.
    7. Fatehi, I., Jabbarian Amiri, B., Mohammadzadeh, N. (2016). Downscaling the atmospheric general circulation model's data and its application in simulating the climatic parameters (Case study: Guilan province), Journal natural of environment, Volume 69, Number 1; Page(s) 143- 158.
    8. Gholipour, J., Mousavi Baygi, S. M., & Jabbari Nooghabi, M. (2019). The Impact of Climate Change on Extreme Precipitation Events in Khorasan Razavi Province (Case study: 1975-2013). Geography and environmental hazards, 7(3), 104-89. https://doi.org/10.22067/geo.v7i3.67279.
    9. Intergovernmental Panel on Climate Change, (2007): Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK, p. 976.
    10. Intergovernmental Panel on Climate Change, (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, p. 582.
    11. Jenkins G, Murphy J, Sexton D, Lowe J, Jones P (2009) UK Climate Projections. Briefing Report. Department for Environment, Food and Rural Affairs (DEFRA), London.
    12. Jiang, Ch. Mu, X. Wang, F. Zhao, G., 2015. Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960-2012. Quaternary International xxx. 1-13.
    13. Keggenhoff, I. Elizbarashvili, M. Amiri-Farahani, A. King, L. (2014): Trends in daily temperature and precipitation extreme sover Georgia, 1971–2010. Weather and Climate Extremes. 4:75–85.
    14. Kouzegaran, S., & Mousavi Baygi, M. (2015). Investigation of Meteorological Extreme Events in the North-East of Iran. Journal of Water and Soil, 29(3), 750-764. https://doi.org/10.22067/jsw.v0i0.40845
    15. Lane, M. E. Kirshen, P. H. and Vogel, R. M. (1999). Indicators of impact of global climate change on U.S. water resources. ASCE, J. Water Resour. Planning and Manag. 125: 194-204. DOI: 10.1.1.711.8987
    16. Lowe J, Bernie D, Bett P, Bricheno L, Brown SJ, Calvert D, et al. (2018) UKCP18 Science Overview report, November 2018. Met Office Hadley Centre.
    17. Mansouri A, Aminnejad B, Ahmadi H.(2018). Investigating the Effect of Climate Change on Inflow Runoff into the Karun-4 Dam Based on IPCC's Fourth and Fifth Report. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources), 22 (2) :345-359
    18. Modaresi, F., Araghinejad, S., Ebrahimi, K., & Kholghi, M. K. (2010). Regional Assessment of Climate Change Using Statistical Tests: Case Study of Gorganroud-Gharehsou Basin. Journal of Water and Soil, 24(3). https://doi.org/10.22067/jsw.v0i0.3613
    19. Mohammadi, H & Taghavi, F. (2007). Trend in temperature and precipitation extreme events in Tehran, Geographical research Quarterly, 23(1), 151-172.
    20. Sun,W. Mu,X. Song,X. Wu,D. Cheng,F. Qiue,B. (2016): Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmospheric Research 168: 33–48.
    21. Tabatabayi, S.A & Hosseyni, M. (2003). Investigation of climate change in Semnan city based on monthly precipitation and average monthly temperature parameters. Third Regional Conference on Climate Change, Meteorological Organization of Iran, University of Isfahan, COI: RCCC03_011.
    22. Wang, X. L. and Y. Feng, published online August (2013): RHtests_dlyPrcp User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 17 pp
    23. Wise RM, Fazey I, Smith MS, Park SE, Eakin HC, Van Garderen EA, Campbell B. (2014). Reconceptualising Adaptation to climate change as part of pathways of change and response. Glob Environ Chang 28:325–336.
    24. Varshaviyan, V., Khalili, A., Ghahreman, N & Hejam, S. (2011). Trend analysis of minimum, maximum, and mean daily temperature extremes in several climatic regions of Iran. Journal of the Earth and Space Physics, Volume:37 Issue: 1, Page: 169
    25. Zhu, Y and Toth, Z. (2001): Extreme Weather Events and their Probabilistic Prediction by the NCEP Ensemble Forecast System, Proceedings of the symposium on Precipitation Extremes: Prediction, Impact, and Responses, Albuquerque, USA, 1-38.