طبقه‌بندی الگوهای گردش جوی روزانه در خاورمیانه و ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد یار- پژوهشکده هواشناسی

2 دانشیار پژوهشگاه هواشناسی و علوم جو

چکیده

الگوهای گردش جوی نقش اصلی در رخداد پدیده­های محیطی به­ویژه در مناطق معتدله دارند. این الگوها سبب ایجاد دوره­های مرطوب یا خشک می­شوند. طبقه­بندی الگوهای گردش جوی روزانه و شناسایی مراکز فعالیت آن­ها در نواحی مختلف ایران در برنامه­ریزی­ها موثر است. در تحقیق حاضر از تحلیل مولفه­های اصلی و خوشه­بندی به منظور طبقه­بندی الگوهای گردش جوی روزانه استفاده شد. میانگین روزانه ارتفاع ژئوپتانسیل تراز 500 هکتوپاسکال و فشار سطح دریا طی دوره 2019-1990 در تفکیک °5/0 از ECMWF استخراج شد. محدوده انتخابی شامل 8281 نقطه از E°65-20 و N°55-10، خاورمیانه و ایران را می­پوشاند. در تحلیل مولفه­های اصلی نقاط وابسته به هم ادغام و ابعاد ماتریس کاهش داده شد، به­طوری­که 9 مولفه اصلی باقی ماند. از آرایه S برای شناسایی تیپ­های هوا و از خوشه­بندیK-Means برای طبقه­بندی تیپ­های هوای روزانه استفاده گردید. همه روزها (10957 روز) به هیجده گروه تقسیم­بندی شدند. نقشه­های ترکیبی فشار سطح زمین و ارتفاع ژئوپتانسیل تراز 500 هکتوپاسکال و توزیع ماهانه تغییرپذیری الگوها به دست آمد. واگرایی شار رطوبت در هر الگو محاسبه و تحلیل شد. نتایج نشان داد که فراوانی الگوهای 1، 7، 13 و 18 در دوره گرم سال و بقیه الگوها اغلب در دوره سرد سال است. این وضعیت با شرایط همدیدی هر یک از الگوها در سطح زمین و تراز 500 هکتوپاسکال مطابق است، طوریکه در الگوهای گردشی دوره گرم سال کم­فشار حرارتی سطح زمین در پائین­تر از مدار °35 با پرارتفاع جنب حاره تراز میانی جو همراه است و بیشینه شار رطوبت تراز 850 هکتوپاسکال در بخش­های شرقی ایران است. در الگوهای گردشی دوره سرد سال، جریان­های جنوبی و جنوب­غربی از کم­فشار جنوب دریای سرخ، اغلب با ناوه تراز میانی جو همراه است، همگرایی شار رطوبت در جنوب دریای سرخ، بخش­هایی از غرب، جنوب­غرب، جنوب و شمال­غرب ایران، شمال­شرق دریای مدیترانه، جنوب­غرب ترکیه و شرق دریای سیاه دیده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Classification of atmospheric circulation patterns in the Middle East and Iran

نویسندگان [English]

  • Zahra Ghassabi 1
  • Ebrahim Fattahi 2
1 Faculty member- ASMERC
2 Associate professor ASMERC
چکیده [English]

Introduction
The main idea of ​​atmospheric circulation patterns and their classification is to convert a set of atmospheric parameters into a univariate catalog, with cases of similar characteristics grouped together. Easier interpretation of weather conditions would be the advantage of the classification.
Many researchers to classify atmospheric circulation patterns have used the principal component analysis (PCA) method. Esteban (2006) in a study of atmospheric circulation patterns in Western Europe, categorized daily synoptic circulation patterns into 20 groups and showed sea level pressure and 500-hPa geopotential height configurations throughout the year. Smith and Sheridan (2018) clustered geopotential height anomalies at levels of 100 and 10-hPa and sea level pressure to study the patterns of tropospheric and stratospheric potential vorticity.
    In Iran, Raziei (2007) by PCA classification and clustering identified 18 atmospheric circulation patterns for the Middle East and Iran. He showed that patterns with meridional and northwest flow often cause drought and patterns with southwest flow cause wetting. Hanafi (1399) identified the air types in the northwestern region of the country (Maragheh station), and showed that the high geopotential systems of Saudi Arabia and North Africa governed by hot and dry conditions and the Mediterranean and polar cold air masses are involved in creating cold periods.
Atmospheric circulation patterns identified for Iran are based on monthly average atmospheric data and with a resolution of 2.5°. Often due to the importance of winter as the main rainy season in Iran, the identification of atmospheric circulation patterns of other seasons has less studied. On the other hand, most studies have conducted regionally in a province/small part of the country. In this study, we have classified the synoptic patterns affecting Iran and the Middle East in the period of 1990-2019, using the PCA method for all seasons and with a higher accuracy using data with 0.5° resolution on a daily time scale. Then, composite maps of the MSLP (Mean Sea Level Pressure) and 500-hPa geopotential height were prepared and analyzed to obtain the frequency of monthly and seasonal occurrence of each investigated pattern. Previous studies have focused mainly on 500-hPa and MSLP parameters. However, in the present study we have used the 850-hPa moisture flux besides the already applied quantities, which can be considered a main and important quantity for the rain occurrence.
Materials and methods  
Geopotential height data of 500-hPa received from the ECMWF (ERA5) at one hour intervals during the period 1990-2019 in the area of 20E-65°E longitude and 10N-55°N latitude. Due to the data volume and software and hardware limitations, data with 0.5° resolution extracted. By calculating the daily average in each grid, the data matrix consisted of 8281 columns (grids) and 10957 rows (number of days). Then the MSLP, 10m wind speed, and 850-hPa temperature and relative humidity maps/data were provided/extracted.
    The PCA analysis is a method for extracting important variables from a large set of variables in a data set. The main goal is to reduce number of components by finding the ones that explain correlations between the variables. We selected the first nine components covering a large portion of the described variances and ignored other minor components. In the present study, the R language programming were used to analyze the principal components with S array and select the components. To classify air types, K-means clustering was used, so that it presents the most alternating patterns of atmospheric circulation in the study area during the year. After selecting the main components and determining the scores of the components, all days (10957 days) were classified into 18 groups. Sea level pressure and 500-hPa geopotential height maps were prepared and interpreted. Monthly and seasonal frequency of occurrence of each pattern and relationship of spatial distribution of moisture flux at 850-hPa were investigated.
Results and discussion
Based on the results obtained from principal component analysis, the first 9 components were selected, which explained 95.93% of the total variance of the data.
 According to the monthly and seasonal distribution of each pattern, it was observed that cp1, cp7 and cp18 circulation patterns occur in summer and early autumn and cp13 occur in late spring, summer and early autumn. Cp2, cp4, cp6, cp8, cp11 and cp16 occur in late autumn to early spring of the following year and cp3, cp5, cp9, cp10, cp12, cp14, cp15 and cp17 circulation patterns occur in late autumn to spring of the following year. These situations correspond to the synoptic conditions of each pattern at sea level and the level of 500-hPa.
In the circulation patterns of the warm period of the year, thermal low pressure of sea level pressure map below 35° N is associated with subtropical high at mid-level of atmosphere. The maximum moisture flux in 850-hPa located in the eastern parts of Iran and the maritime borders of Yemen and Oman which is compatible with southern and southeastern flow. In cp2, cp4, cp6, cp8, cp11 and cp16 circulation patterns that occur in the cold period of the year; south and southwest flow of low pressure in the south of the Red Sea are associated with mid-level of atmosphere. There is convergence of moisture flux in the south of the Red Sea and in parts of the south and southwest of Iran, east of the Black Sea, northeast of the Mediterranean Sea and south of Turkey.
In other patterns that occur in the cold period of the year as well as in spring, low pressure in south and center of the Red Sea is associated with trough in the mid-level of the atmosphere. Convergence of moisture flux was in the west, southwest, south and northwest of Iran, northeast of the Mediterranean Sea, southwest of Turkey and south of the Red Sea.
Conclusion
In the present study, principal component analysis with S array and K-means clustering was used to classify circulation patterns in Middle East and Iran. The results show significant differences in the arrangement of patterns, the frequency of air types and their path to Iran.

کلیدواژه‌ها [English]

  • Atmospheric Circulation patterns
  • principal components analysis
  • Moisture flux
  • Middle East
  • Iran
  1.  

    1. Amiri A., B. Alijani, Z. Hejazizadeh, E. Fattahi and M. Azadi. 2018. Investigating the Relationship between Relative Vorticity Activity Centers in the Middle East and Air Temperature in Iran. Journal of Climate Research. 9 (36). 1-12.
    2. Hoseyni A. and H. Akbari Ghamsari. 2017. Identification of synoptic patterns causing heavy rainfall in Taleghan watershed in Alborz province. Journal of Spatial Analysis Environmental Hazards. 3(4). 89-100.
    3. Hanafi A. 2020. Identify weather types of North West and their relationship with Atmospheric circulation patterns (case study: Maragheh synoptic stations). Journal of Geographical sciences. 16(32). 31-44.
    4. Raziei T. 2007. Investigation of the relationship between 500 hPa atmospheric circulation patterns and dry and wet periods in western Iran. Ph.D Thesis, University of Tehran.
    5. Fattahi E. and T. Raziei. 2009. Daily Atmospheric Circulation Patterns over Iran. Journal of Geographical research. 93. 45-74
    6. Fattahi E. and O. Babaei Fini.2018. Classification of synoptic patterns of precipitation and drought in Iran. Journal of Geographical research. 29(1).105-122.
    7. Azizi G. and Alizadeh T. 2014. Relationship between the Type of Sea Level Circulation Patterns and Widespread Rrainfall in Iran. Journal of Physical Geography Research. 46(3). 297-310.
    8. Alijani B. 2001. Weather types and their effect on Iran's climate. Kavoshnameh. 2(3). 21-49.
    9. Ghayoor H. A.H. Halbyan. B. saberi and F. Hoseynalipoor Jazi. 2012. Investigation of the relationship between heavy rainfall and high atmospheric circulation patterns (Case study: South Khorasan province). Environmental hazards. 1(2).11-27.
    10. Mostafaei H. B. Alijani and M. saligheh. 2015. Synoptic analysis of heavy and widespread rainfall in Iran. Journal of Spatial analysis of environmental hazards. 2(4). 65-76
    11. Alijani B. 2002. Variation of 500hpa flow patterns over Iran and surrounding areas and their relationship with climate of Iran. Theoretical and Applied Climatology. 72. 41-54.
    12. Chadee Xsitaaz T. and R.M. Clark. 2015. Daily near‑surface large‑scale atmospheric circulation patterns over the wider Caribbean. Climate Dynamic-Springer. 44. 2927–2946. DOI 10.1007/s00382-015-2621-2.
    13. Darand M. R. Garcia Herrera. H. Asakereh. R. Amiri and D. Barriopedro. 2018. Synoptic conditions leading to extremely warm periods in Western Iran. International Journal of Climate. 38(1). 307-319. DOI:10.1002/joc.5177.
    14. Esteban P. J.M.Vide and M. Masesc. 2006. Daily Atmospheric Circulation Catalogue for Western Europe Using Multivariate Techniques. International Journal of Climatology. 26. 1501–1515. DOI: 10.1002/joc.1391.
    15. Esteban P. P.D. Jones. J.M. Vide and M. Mases. 2005. Atmospheric Circulation Patterns Related to Heavy Snowfall Days in Andorra, Pyrenees. International Journal of Climatology. 25. 319–329.
    16. Huth R. C. Beck. A. Philipp. M. Demuzere. Z. Ustrnul. M. Cahynov´a. J. Kysel´y and O. E. Tveito. 2008. Classifications of atmospheric circulation patterns. Annals of the New York Academy of Sciences. 1146, 105– 152.
    17. Jiang N. 2011. A new objective procedure for classifying New Zealand synoptic weather types during 1958–2008. International Journal of Climatology. 31. 863–879. DOI: 10.1002/joc.2126.
    18. Jolliffe I.T. 2002. Principal Component Analysis. Second edition, New York: Springer-Verlag New York, Inc.
    19. Käsmacher O. and C. Schneider. 2011. An Objective Circulation Pattern Classification for the Region of Svalbard. Geografiska Annaler: Series A, Physical Geography, 1-13, DOI: 10.1111/j.1468-0459.2011.00431.x.
    20. Lakson M. P. Post and M.Sepp. 2019. The Impact of Atmospheric Circulation on Air Temperature Rise in Estonia. Frontiers in Earth Science. 7.1-12. DOI: 10.3389/feart.2019.00131.
    21. Lupikasza E. 2010. Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Physics and Chemistry of the Earth. 35. 448–455.
    22. Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine. Series 6. 2(11). 559-572.
    23. Smith Erik T. and S.C. Sheridan. 2018. The influence of atmospheric circulation patterns on cold air outbreaks in the eastern United States. International Journal of Climatology. DOI: 10.1002/joc.5935.
    24. Vicente Serrano. S.M. R. Trigo. J.I. Lopez Moreno. M.L.R. Liberato. J. Lorenzo Lacruz. S. Begueria. E. Moran Tejeda and A. El Kenawy. 2011. The 2010 extreme winter north hemisphere atmospheric variability in Iberian precipitation: anomalies, driving mechanisms and future projections. Climate Research. 46. 51-65. DOI: 10.3354/cr00977.