تحلیل شاخص توفان گردوخاک (DSI)، بسامد رخدادهای گردوخاک و دید افقی در منطقه غرب آسیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 استادیار، پژوهشکده هواشناسی، تهران، ایران

3 دانش‌آموخته دکتری هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

4 دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

پدیده گردوخاک به‌عنوان یکی از مخاطرات جوی در بسیاری از کشورهای مناطق خشک و نیمه‌خشک جهان می‌تواند بر جنبه‌های مختلف زندگی انسانی ازجمله سلامتی، زیست‌بوم، حمل‌ونقل، صنعت و انرژی آثار مخربی داشته باشد. کشور ایران در بخشی از کمربند گردوخاکی که از صحرای بزرگ آفریقا به غرب و مرکز آسیا کشیده شده، قرار گرفته است و هرساله توفان‏های گردوخاک در مناطق مختلف کشور رخ داده که موجب بروز خسارات فراوان می‏شود. همچنین خشکسالی‌های اخیر سبب ایجاد کانون‌های داخلی گردوخاک در خاورمیانه و ایران و نیز تشدید فعالیت آن‌ها شده است. در این مقاله، به‌منظور بررسی الگوی زمانی و مکانی پدیده گردوخاک در خاورمیانه به تحلیل شاخص توفان گردوخاک ، بسامد رخدادهای گردوخاک و کاهش دید افقی متأثر از رخدادهای گردوخاک در بازه زمانی 2009 الی 2018 پرداخته شده است. میانگین ماهانه، فصلی و سالانه DSI نشان داد که این شاخص در بیشتر کشورهای واقع در محدوده موردمطالعه به‌شدت به توفان‌های گردوخاک محلی وابسته است و توفان‌های گردوخاک متوسط و یا فرامرزی تأثیر کمتری بر روی این کشورها دارند. بررسی بسامد رخدادهای گردوخاک نیز نشان می‌دهد که طی این دوره مطالعاتی، نیمه غرب و جنوب غرب کشور در سال‌های 2009، 2011 و 2012 با شدت بیشتری تحت تأثیر پدیده گردوخاک با منشاء غیر محلی بوده‌اند. تعداد روزهای همراه با کاهش دید افقی بین 800 تا 1500 متر ناشی از گردوخاک در نواحی جنوبی کشور پاکستان، سواحل مکران، بخش‌های مرکزی و شرقی شبه‌جزیره عربستان و نیز در جنوب غربی ایران نسبت به سایر مناطق موردمطالعه از مقادیر بیشتری برخوردار بوده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

The analysis of Dust Storm Index (DSI), Frequency of dust events and horizontal visibility in the West Asian

نویسندگان [English]

  • Mehdi Rahnama 1
  • Saviz Sehatkashani 2
  • Noushin Khoddam 3
  • Sara Karami 1
  • sahar tajbakhsh 1
  • Abbas Ranjbar 4
1 Assistant, Professor, Atmospheric Science and Meteorological Research Center (ASMERC),Tehran, Iran
2 Assistant Professor, Atmospheric Science AND Meteorological Research Center(ASMERC), Theran, Iran
3 Ph.D. in Meteorology -Atmospheric Science and Meteorological Research Center (ASMERC)
4 Associate Prof. Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

The phenomenon of dust as one of the atmospheric hazards in many countries in arid and semi-arid regions of the world can have devastating effects on various aspects of human life, including health, ecology, transportation, industry, energy, etc. Iran is located in a part of the dust belt that stretches from the Sahara Desert to West and Central Asia, and every year dust storms occur in different parts of the country and cause a lot of damage. Recent droughts have also intensified internal dust sources in the Middle East and Iran. In this study, in order to investigate the temporal and spatial pattern of dust phenomenon in the Middle East, Dust Storm Index (DSI) and horizontal visibility in West Asia have been analyzed. In order to calculate the dust storm index and to study the horizontal visibility, the observed data of synoptic stations in the study area in the period 2009 to 2018 were used, which include Iran, Iraq, Syria, Turkey, Tajikistan, Uzbekistan, Turkmenistan, Armenia, Azerbaijan, Georgia, parts of Russia, Kazakhstan, Afghanistan, Pakistan, Yemen, Oman, UAE, Qatar, Bahrain, Saudi Arabia and Jordan. The monthly and annual DSI averages showed that this index is suitable for monitoring wind erosion on a large scale using meteorological records that calculate the frequency and intensity of dust storms in the region. This index is a combination of three indices of stormy days with local dust, moderate dust storm and severe dust storm, which are calculated based on the number of times the dust phenomenon codes reported in synoptic stations. The results showed that the changes of DSI in the whole study area have increased from 2009 to 2015; but from 2015 to 2018, this trend has been decreased. The DSI index provides a comprehensive index of the trend of change in the region, taking into account both local and non-local dust. Studies show that the DSI index in most countries in the study area is highly dependent on local dust storms and moderate or non-local dust storms have less impact on these countries. The study of the frequency of dust events shows that during this study period, based on the report of the frequency of the dust phenomenon of non-local origin and visibility of less than 5000 meters in spring, it was determined that the western and southwestern regions of the country are more affected by the phenomenon of non-local dust sources. The similar pattern prevails in spring for the number of dusty days with a decrease in visibility in the north, south and southeast, east and northeast and the center of the country. Meanwhile, the number of dusty days in the western and southwestern part of the country is higher in summer than in spring. In autumn, the frequency of dusty days with a less than 5,000 meters visibility reduction in all regions of the country has sharply decreased compared to spring and summer. The trend in the frequency of dust-related phenomena in winter follows the autumn regime and approximately with the same intensity in the areas of east and northeast, south and southeast, northwest and center. The study of the average monthly, seasonal and annual horizontal visibility showed that in the central and eastern regions of Saudi Arabia and southwestern Iran, more than 60 days with dust has led to a decrease in visibility to less than 800 meters. In addition, in the Makran coast in southern Pakistan and in the Sistan region, the highest number of dusty days with a decrease in visibility between 800 and 1500 meters has been reported. It was also observed that in summer in the Sistan region more than 100 days of dust with a decrease in visibility of less than 800 meters has been recorded. Also, in this season, in addition to the Sistan region, dust events on the coasts of Makran, southwestern Iran and eastern Saudi Arabia have reduced the horizontal visibility between 800 to 1500 meters. In general, the largest decrease in visibility in May is in the eastern part of Saudi Arabia near the shores of the Persian Gulf, in the southern part of Kuwait, as well as in the northern part of Saudi Arabia on the Iraqi border and in the central part of Iraq. In June and July, in the eastern parts of Iraq, western and southwestern Iran, as well as in part of northern Pakistan on the Afghanistan border, between 10 and 20 days of dust in the horizontal range of less than 800 meters were reported. Moreover, the annual study of the decrease in horizontal visibility due to dust events showed that the largest decrease in visibility was recorded in 2010, so that in the northern parts of Saudi Arabia on the Iraqi border and small parts of central and eastern Iraq on the border between Iran and southwestern Iran between 10-20 days and in the southwest of Pakistan on the coast of Makran between 50-60 days of dust events in the horizontal visibility range of 800 to 1500 meters has been reported.

کلیدواژه‌ها [English]

  • Visibility
  • DSI
  • Dust
  1.  

    1. Alizadeh-Choobari, O, A Sturman, P Zawar-Reza, 2015: Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem. Meteorology and Atmospheric Physics 127 (6), 635-648.
    2. Borunda, A., 2020: Saharan dust is bad for health. But it’s also crucial to Earth’s biology and climate. Natinal geography, Science.
    3. Cakmur RV, Miller RL, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Tegen I, Zender CS, 2006: Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J Geophys Res 111, D06207. doi:10.1029/2005JD005791.
    4. Hong, S. Y. AND Noh Y., 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly weather review, 134, 2318-2341.
    5. Karami, S, A Ranjbar, A.R. Mohebalhojeh, M Moradi, 2017: A rare case of haboob in Tehran: Observational and numerical study. Atmospheric Research, DOI: 10.1016/j.atmosres.2016.10.010.
    6. Kaskaoutis, D. G., A., Rashki, E. E., Houssos, A., Mofidi, D., Goto, A., Bartzokas, P., Francois, and M., Legrand, 2014: Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Clim. Dyn., 45, 407–424.
    7. Laurent B, Marticorena B, Bergametti G, Léon JF, Mahowald NM, 2008: Modeling mineral dust emissions from the Sahara Desert using new surface properties and soil database. J Geophys Res 113, D14218. doi:10.1029/2007JD009484.
    8. Laurent B, Marticorena B, Bergametti G, Mei F, 2006: Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob Planet Change 52:121–141.
    9. McTainsh, G.H., Lynch, A.W. and Burgess, R.C., 1990: Wind erosion in eastern Australia. Soil Research, 28(2), pp.323-339.
    10. Middleton, N., Tozer, P. and Tozer, B., 2019: Sand and dust storms: underrated natural hazards. Disasters, 43(2), pp.390-409.
    11. Miller, R.L., I. Tegen, and P. Perlwitz, 2004: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109, D04203, doi: 10.1029/2003JD004085.
    12. Miller, S. D., 2003: A consolidated technique for enhancing desert dust storms with MODIS. Atmospheric Science, VOL. 30, NO. 20, 2071, doi: 1029/2003GL018279.
    13. Miri, A., H. Ahmadi, A. Ghanbari, A. R. Moghaddamnia, 2007: Dust Storms Impacts on Air Pollution and Public Health under Hot and Dry Climate.  International Journal of energy and environmental engineering, 1 (2), 101- 105.
    14. Rémy, S., A. Benedetti, A. Bozzo, T. Haiden, L. Jones, M. Razinger, J. Flemming, R. J. Engelen, V. H. Peuch, and J. N. Thepaut, 2015: Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean. Atmos. Chem. Phys., 15, 12909–12933.
    15. Salvador, P., S. Alonso-Pérez, J. Pey, B. Artíñano, J. J. de Bustos, A. Alastuey, and X. Querol, 2014: African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. Atmos. Chem. Phys., 14, 6759–6775, 2014.
    16. Schlesinger, P., Y. Mamane, and I. Grishkan. 2006: Transport of microorganisms to Israel during Saharan dust events. Aerobiologia22:259-273. 
    17. SehatKashani, S., M. Salehi Barough, A.A. Bidokhti, A.Ranjbar, 2009: The Numerical Study of Low Level Jets Formation in South Eastern of Iran. International Scholarly and Scientific Research & Innovation 4(10) 2010.
    18. Sehatkashani, S., M.Vazifedoust, Gh. Kamali, A.A. Bidokhti, 2016: Dust detection andAOT estimation using combined VIR and TIR satellite images in urban areas of Iran. Sci. Iran. A 23 (5), 1984–1993 2016.
    19. Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C., and Iacono, M. J., 2013: Modeling the radiative effects of desert dust on weather and regional climate. Atmos. Chem. Phys., 13, 5489– 5504, doi: 10.5194/acp-13-5489-2013.
    20. Takemi, T., M., Yasuni, J., Zhou, and L., Liu, 2006: Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. J. of Geophysical Research, 111, D111203.
    21. Zhang, Y.-C., B. Rossow, and P.W. Stackhouse, Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi: 10.1029/2005JD006873.
    22. Shoaee, Z., A. Norowzi, 1397: Statistical study of dust events in Ilam province during the period of 2000-2000. 2nd international conference on Dust, Ilam.
    23. Sehatkashani, S., A.A. Bidokhti, A. Rajnbar, 1385: Numerical study of wind field in Lut valley using numerical simulation in warm and cold seasons. A thesis for Master degree, Department of Meteorology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch.
    24. Mashayekhi, R., P. Irannezhad, A.A. Bidokhti, 1389: The simulation of aerosols and its radiative forcing using the new coupled system of aerosol HAM model with the weather research and forecasting (WRF) model. J. of the earth and space physics, 36 (2), 91-107.