تخمین غلظت ذرات معلق با استفاده از روش‌های رگرسیون و شبکه عصبی از داده‌های ماهواره‌ای اسپکترورادیومتر تصویربردار چندزاویه‌ای (MISR) در شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 گروه منابع آب، دانشکده عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهان، ایران

چکیده

از اثرات عمده تغییر اقلیم، تاثیر آن بر کیفیت محصولات کشاورزی می‌باشد و انگور یکی از محصولات باغی استراتژیک کشاورزی می‌باشد. مقادیر دما و بارش روزانه ایستگاه گلمکان براساس مدل HadCM3 در دوره پایه (2005-1987) و آینده نزدیک (2050-2020) تحت سناریوهای RCP8.5,RCP4.5 با استفاده از روش ﻋﺎﻣﻞ ﺗﻐﻴﻴﺮ، ریزمقیاس شدند سپس با استفاده از سه سری داده‌های پایه هواشناسی، ریزمقیاس نمایی و کیفیت مشاهداتی انگور، کیفیت انگور برای آینده با بکارگیری شبکه عصبی پرسپترون در Matlab 2019A ﺷﺒﯿﻪ ﺳﺎزی شده است. مدل اقلیمی، اﻓﺰاﯾﺶ دﻣﺎ و ﮐﺎﻫﺶ ﺑﺎرﻧﺪﮔﯽ در آینده را تحت سناریوهای RCP8.5,RCP4.5 نسبت ﺑـﻪ دوره ﭘﺎﯾﻪ نشان داد. دﻣﺎی حداکثر به ترتیب 3، 9 و 4.7 درجه سانتی گراد افزایش و دﻣﺎی حداقل به ترتیب 3.8 و 4.4 درجه سانتی گراد افزایش و ﺑﺎرش به ترتیب 3/0 و 8/0 میلیمتر کاهش را دارد. هر یک از متغیرهای مستقل دمای کمینه، بیشینه، و بارش با هر یک از متغیرهای وابسته سن درخت، قند، وزن خوشه، اندازه خوشه، طول میوه، عرض میوه، اسیدیته، pH و TSS رابطه معناداری را بر پایه آزمون پیرسون نشان می‌دهند. تحت هر دو سناریو وزن خوشه، اندازه خوشه، طول میوه، عرض میوه، قند، pH، TSS بریکس، اسیدیته و وزن حبه به صورت کاهشی پیش بینی می‌شود. در RCP8.5 میزان تغییرات بیشتر از RCP4.5 می‌باشد. در خصوصیات رنگ آبمیوه، رنگ گوشت، طعم میوه، انبارداری، بازارپسندی و حمل و نقل در دو سناریو بدون تغییر است. آزمون T-Test تغییر در متغیرهای pH، قند، اسیدیته، وزن خوشه، طول میوه و طول در عرض خوشه در دو سناریو معنادار بوده است. متغیرهای وزن حبه و عرض میوه در دو سناریو 4.5 و 8.5، اندازه خوشه سناریو 8.5 و طول در عرض حبه سناریوی 4.5 فاقد تغییرات معنی داری است. نتایج نشان می‌دهد، دراثر افزایش دما و کاهش بارندگی در اقلیم آتی، برخی متغیرهای کیفت انگور در آینده با روند کاهش معنی داری مواجه خواهند شد.

کلیدواژه‌ها


عنوان مقاله [English]

Retrieving concentration of particle matters using regression models and neural network model from Multi-angle Imaging SpectroRadiometer (MISR) satellite data in Tehran

نویسندگان [English]

  • Mozhgand Bagherinia 1
  • Majid Rahimzadegan 2
1 Environmental Engineering Department, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, IRAN.
2 Water Resources Department, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, IRAN.
چکیده [English]

Aerosols or airborne particulate matter (PM) with different sizes from both natural and anthropogenic emission sources have substantial influences on climate, environment and human health. Particulate matter is characterized by the size (PM10 andPM2.5; particles having an aerodynamic diameter less than 10 and 2.5 μm). However, due to limited spatial coverage and high operational cost, in situ observations are insufficient to capture high resolution, tempo-spatial variation of PM concentration, especially for many developing countries such as Iran. Satellite remote sensing technology, on the other hand, provides a cost-effective way for epidemiological studies and PM monitoring. at various scales by measuring satellite-derived aerosol optical depth (AOD), especially for places where ground-level monitoring is not available. Satellite-derived AOD is related to ground-level PM concentration and can be empirically converted into PM mass. Therefore, a number of empirical models have been developed to predict ground-level PM2.5 or PM10 concentration from various satellite-derived AOD products, such as Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectro Radiometer (MISR). There are a few studies about the AOD-PM relationship in Iran and much fewer studies use MISR instrument.  level2 product of AOD retrieved by MISR with improved resolution of 4.4 km, is a suitable instrument for estimating particular matter. Therefore, the main aim of this study was investigating empirical linear and nonlinear regression models along with artificial neural network model for estimating particulate matter (containing PM2.5 and PM10) using AOD from the MISR 4.4 km aerosol product. In this regard, Tehran one of the largest industrial cities of Iran during 2016 and 2017 was selected as the study area.
 
To assess ground level PM2.5 and PM10, a number of data sets from various sources were collected for this research, including 2 years daily PM2.5 and PM10 mass concentration at 13 air quality aground stations in Tehran which had sufficient records. Also we used 3 meteorological stations including Geophysic, Mehrabad, and Shemiran. Ground-based meteorological parameters (a total of five parameters), including surface wind speed (SPD), surface temperature (ST), visibility (Vis), and surface relative humidity (SRH), and dew point temperature (Td) were obtained from the meteorological stations. 
MISR instrument onboard the EOS-Terra satellite measures the reflected and scattered sunlight from the Earth in four spectral bands of 446, 558, 672, and 866 nm at each of the nine viewing angles (nadir, ±26.1, ±45.6, ±60.0, and ±70.5°). It has a much narrower swath of about 380 km compared with that of about 2330 km of MODIS. The level 2 MISR AOD has the spatial resolution of 4.4 km and the temporal coverage is about once per week in mid latitude. The latest global MISR AOD product (version 22) for 2013 can be downloaded from the Atmospheric Sciences Data Center at NASA/Langley Research Center (http:// eosweb.larc.nasa.gov).
Since the data stations are dispersed, PM monitoring sites were matched with meteorological stations based on the neighboring. On the other hand, as MISR pixels are not distributed equally all over the region, we match them to closest PM monitoring site. Previous studies show that the distance between AOD pixels and closest PM monitoring ground stations must be within 25 km.
In order to retrieve the ground-level PM value proper conversion should be made first. Related researches have shown that the meteorological conditions (such as relative humidity) can strongly impact models for the AOD–PM relationship, as particle extinction properties can change substantially with different vertical mixing and aerosol hygroscopic growth. Thus, |there is a number of methods which proposed to use meteorological factors to improve the relationship between AOD and ground-level PM. In this study, we developed linear and nonlinear models using MISR AOD values coupled with meteorological parameters for estimating daily ground-level PM concentration:
 
where PM is daily ground-level PM2.5 or PM10 mass concentration (μg/m3), and AOD is MISR-derived AOD (unit less). c1 is the intercept Regression coefficients. c2–c7 are associated with predictor variables, including AOD, visibility (km), surface wind speed (m/s), surface temperature (°C), surface relative humidity (%), and dew point(°C).
In some studies, an exponential function is used for visibility, relative humidity and dew point temperature. Furthermore, surface meteorological conditions including surface temperature and surface wind speed are employed in the model to further amend the corrected AOD to obtain a better relationship between AOD and PM. Here is the none linear model:
 
As the third approach, neural network algorithms - black-box models of artificial intelligence- were employed. We used the artificial neural network (ANN) algorithm to model ground-level PM concentration based on the meteorological variables and satellite-derived AOD data. We used a back-propagation neural network (BPNN) algorithm to build the ground-level PM estimation model for predicting the PM concentration. The estimation of the ground-level PM concentration model consists of six in the input layer, six neurons in the hidden layer, and one neuron in the output layer. The seven parameters in the input layer include, surface temperature, wind speed, relative humidity, visibility, dew point temperature and MISR AOD products. The neuron in the output layer is PM concentration.
Cross validation (CV) of all models was conducted by leaving 10 percent of entire PM monitoring site out, fitting the model without this part, and predicting daily PM from 2016 to 2017 for the left out data with the fitted model. This was iterated so that every data was left
out one at a time, and the associations between the predicted values and the observed values were assessed to examine model performance.
 
Linear and nonlinear regression models had similar predictability for ground-level PM10 (respectively correlation coefficients of 41% and 45%) and PM2.5 (respectively correlation coefficients of 46% and 42%). Artificial neural networks improved the estimation of surface PM2.5 and PM10 significantly and the correlation coefficients improved to 60% and 65%. for PM2.5 and PM10, respectively. It is clear that the neural network model enhanced the regression models result about 19 to 23 percent. The result can use in the regions which there is not sufficient air quality stations.

کلیدواژه‌ها [English]

  • Multi-angle Imaging SpectroRadiometer (MISR)
  • Aerosol Optical Depth (AOD)
  • PM10
  • PM2.5
  • Artificial Neural Network
  1. Chin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi and T. Nakajima (2002). "Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements." Journal of the atmospheric sciences 59(3): 461-483.
  2. Chu, Y., Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li and M. Ren (2016). "A review on predicting ground PM2. 5 concentration using satellite aerosol optical depth." Atmosphere 7(10): 129.
  3. Chylek, P., B. G. Henderson and G. Lesins (2005). "Aerosol optical depth retrieval over the NASA Stennis Space Center: MTI, MODIS, and AERONET." IEEE Transactions on Geoscience and Remote Sensing 43(9): 1978-1983.
  4. Dawson, J., P. Adams and S. Pandis (2007). "Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study." Atmospheric chemistry and physics 7(16): 4295-4309.
  5. De Meij, A. and J. Lelieveld (2011). "Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006." Atmospheric Research 99(3-4): 415-433.
  6. Diner, D., W. Abdou, T. Ackerman, K. Crean, H. Gordon, R. Kahn, J. Martonchik, S. McMuldroch and S. Paradise (1999). Multi-angle Imaging SpectroRadiometer (MISR)Level 2 aerosol retrieval algorithm theoretical basis, Jet Propulsion Laboratory.
  7. Diner, D. J., W. A. Abdou, T. P. Ackerman, K. Crean, H. R. Gordon, R. A. Kahn, J. V. Martonchik, S. McMuldroch, S. R. Paradise, B. Pinty, M. M. Verstraete, M. Wang and R. A. West (2008). Multi-angle Imaging SpectroRadiometer (MISR)Level 2 aerosol retrieval algorithm theoretical basis, Jet Propulsion Laboratory.
  8. Diner, D. J., J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies and S. A. Gerstl (1998). "Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview." IEEE Transactions on Geoscience and Remote Sensing 36(4): 1072-1087.
  9. Franklin, M., O. V. Kalashnikova and M. J. Garay (2017). "Size-resolved particulate matter concentrations derived from 4.4km-resolution size-fractionated Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depth over Southern California." Remote Sensing of Environment 196: 312-323.
  10. Gamshadzaei, M. H. and M. Rahimzadegan (2017). "Stable and accurate methods for identification of water bodies from Landsat series imagery using meta-heuristic algorithms." Journal of Applied Remote Sensing 11(4): 045005.
  11. Gerivani, H., G. R. Lashkaripour, M. Ghafoori and N. Jalali (2011). "The source of dust storm in Iran: a case study based on geological information and rainfall data." Carpathian Journal of Earth and Environmental Sciences 6.
  12. Guo, J.-P., X.-Y. Zhang, H.-Z. Che, S.-L. Gong, X. An, C.-X. Cao, J. Guang, H. Zhang, Y.-Q. Wang, X.-C. Zhang, M. Xue and X.-W. Li (2009). "Correlation between PM concentrations and aerosol optical depth in eastern China." Atmospheric Environment 43(37): 5876-5886.
  13. Gupta, P., S. A. Christopher, J. Wang, R. Gehrig, Y. Lee and N. Kumar (2006). "Satellite remote sensing of particulate matter and air quality assessment over global cities." Atmospheric Environment 40(30): 5880-5892.
  14. Haikin, S. (1994). Neural Networks: A Comprehensive Foundation, Prentice Hall PTR
  15. Kůrková, V. (1992). "Kolmogorov's theorem and multilayer neural networks." Neural networks 5(3): 501-506.
  16. Li, C., N. C. Hsu and S.-C. Tsay (2011). "A study on the potential applications of satellite data in air quality monitoring and forecasting." Atmospheric Environment 45(22): 3663-3675.
  17. Li, R., X. Liu and X. Li (2015). "Estimation of the PM2. 5 pollution levels in Beijing based on nighttime light data from the defense meteorological satellite program-operational linescan system." Atmosphere 6(5): 607-622.
  18. Liu, Y., J. A. Sarnat, V. Kilaru, D. J. Jacob and P. Koutrakis (2005). "Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing." Environmental science & technology 39(9): 3269-3278.
  19. Mardi, A. H., A. Khaghani, A. B. MacDonald, P. Nguyen, N. Karimi, P. Heidary, N. Karimi, P. Saemian, S. Sehatkashani and M. Tajrishy (2018). "The Lake Urmia environmental disaster in Iran: A look at aerosol pollution." Science of the Total Environment 633: 42-49.
  20. Martonchik, J. V., D. J. Diner, K. A. Crean and M. A. Bull (2002). "Regional aerosol retrieval results from MISR." IEEE Transactions on geoscience and remote sensing 40(7): 1520-1531.
  21. Mehdipour, V. and M. Memarianfard (2017). "Application of support vector machine and gene expression programming on tropospheric ozone prognosticating for tehran metropolitan." Civil Engineering Journal 3(8): 557-567.
  22. Ni, X., C. Cao, Y. Zhou, X. Cui and R. P Singh (2018). "Spatio-Temporal Pattern Estimation of PM2. 5 in Beijing-Tianjin-Hebei Region Based on MODIS AOD and Meteorological Data Using the Back Propagation Neural Network." Atmosphere 9(3): 105.
  23. Péré, J. C., V. Pont, M. Mallet and B. Bessagnet (2009). "Mapping of PM10 surface concentrations derived from satellite observations of aerosol optical thickness over South-Eastern France." Atmospheric Research 91(1): 1-8.
  24. Sabetghadam, S., M. Khoshsima and O. Alizadeh-Choobari (2018). "Spatial and temporal variations of satellite-based aerosol optical depth over Iran in Southwest Asia: Identification of a regional aerosol hot spot." Atmospheric Pollution Research 9(5): 849-856.
  25. Sotoudeheian, S. and M. Arhami (2014). "Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran." Journal of Environmental Health Science and Engineering 12(1).
  26. Tian, J. and D. Chen (2010). "A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements." Remote Sensing of Environment 114(2): 221-229.
  27. Xu, D., Y. Wang and R. Zhu (2018). "Atmospheric environmental capacity and urban atmospheric load in mainland China." Science China Earth Sciences 61(1): 33-46.
  28. Yap, X. and M. Hashim (2012). "A robust calibration approach for PM 10 prediction from MODIS aerosol optical depth." Atmospheric Chemistry & Physics Discussions 12(12).
  29. You, W., Z. Zang, X. Pan, L. Zhang and D. Chen (2015). "Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models." Science of The Total Environment 505: 1156-1165.
  30. Zheng, J., W. Che, Z. Zheng, L. Chen and L. Zhong (2013). "Analysis of spatial and temporal variability of PM10 concentrations using MODIS aerosol optical thickness in the Pearl River Delta Region, China." Aerosol and Air Quality Research 13(3): 862-876.