بررسی میزان مطابقت بناهای خاک‌پناه میمند با اقلیم آن از لحاظ آسایش حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه معماری، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

2 استادیار دانشگاه علم و صنعت ایران، دانشکده معماری و شهرسازی

3 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.

چکیده

اقلیم را می­توان یکی از مهم­ترین موضوعات مرتبط با معماری دانست که اطلاعات آن قبل از طراحی می­تواند در جهت ایجاد آسایش حرارتی کمک شایانی کند. از تبعات عدم توجه به اقلیم در معماری، بناهای نامناسب از لحاظ تامین آسایش حرارتی می­باشد که می­بایستی در آن از سوخت ­فسیلی استفاده شود. همچنین عدم ایستگاه­های همدید و هواسنجی جهت شناخت اقلیم یک منطقه خاص از دیگر مسائلی است که نمی­توان میزان تطابق معماری با اقلیم مورد نظر را بطور دقیق بررسی نمود. در پژوهش حاضر ساخت و شناخت اقلیم یک منطقه از طریق نرم­افزار و میزان همسازی معماری و اقلیم آن، دغدغه پژوهش می­باشد. بنابراین بررسی میزان انطباق بناهای خاک­پناه میمند از اقلیم خود مساله اصلی مقاله تلقی گردید. همچنین شناسایی تاثیرگذارترین متغیرهای اقلیمی بر شکل­گیری بناهای روستای میمند از لحاظ آسایش حرارتی به عنوان هدف اصلی پژوهش انتخاب شد. برای تحقق هدف، از روش تحقیق پژوهش موردی بر پایه اندازه­گیری­های میدانی کمک گرفته شد و از نرم­افزار تخصصی به عنوان روش جمع­آوری اطلاعات استفاده گردید. همچنین از نمودارهای حاصله از نرم­افزار به عنوان ابزار تجزیه و تحلیل داده­ها استفاده گردید. لازم به ذکر است که روستای میمند به عنوان نمونه موردی انتخاب شد و مطالعات میدانی در روزهای 11، 12 و 13 مرداد سال 1398 انجام گرفت. متغیرهای درجه­حرارت و رطوبت نسبی توسط دستگاه ثبت داده حصول یافت و سپس اقلیم روستای میمند در طی دوره آماری 1991-2019 در نرم­افزار متانورم ساخته شد. سپس خروجی آن و بطور خاص اطلاعات درجه حرارت و رطوبت نسبی با داده­های کلی ایستگاه همدید شهر بابک و همچنین خروجی دستگاه ثبت داده جهت صحت­سنجی مقایسه و کنترل شد. پس از صحت­سنجی اطلاعات نرم­افزار متانورم، فایل EPW اقلیم روستای میمند وارد نرم­افزار کلایمیت­کانسولتنت گردید. نتایج نشان داد که بیشترین متغیر تاثیرگذار اقلیمی بر شکل­گیری بناهای خاک­پناه میمند، مولفه درجه حرارت می­باشد و حداکثر تطابق معماری روستای میمند با اقلیم آن از نظر آسایش حرارتی در بخش­های شکل پلان و تناسبات، شاکله بنا، مصالح و جرم حرارتی، نسبت بازشو به دیوار، ضخامت جداره­ها و سایه­بان­های قابی­شکل بود. کمترین میزان توجه در جهت­گیری بناها نسبت به تابش خورشید بود که احتمالا به دلایل بافت طبیعی روستا شکل گرفته است. همچنین بناهایی که بطور همزمان دارای جهت­گیری جنوبی و یا جنوب شرقی نسبت به تابش خورشید، قرارگیری در تراز ارتفاعی میانی توپوگرافی، شاکله مربعی پلان و عمق حداکثری نفوذ بنا در خاک بودند، به عنوان همسازترین بناها با اقلیم از نظر آسایش حرارتی انتخاب شدند. به عنوان یک نتیجه­گیری کلی می­توان اذعان نمود که بناهای خاک­پناه روستای میمند از جنبه­های متعددی با اقلیم خود مطابقت دارد که نتیجه آن آسایش حرارتی در دوره­های زمانی سال می­باشد و در نهایت راهکارهای معماری همساز با اقلیم آن می­تواند الگویی برای معماری معاصر دیگر مناطق مشابه اقلیم میمند باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Conformity of Meymand Earthsheltered Buildings with Its Climatic in Thermal Comfort

نویسندگان [English]

  • Amirreza Khaksar 1
  • Seyed-Majid Mofidi-Shemirani 2
  • Mahmoud Nikkhah-Shahmirzadi 3
1 Department of Architecture, Semnan Branch, Islamic Azad University, Semnan, Iran.
2 Assistant Professor Iran University of Science & Technology, Faculty of Architecture and Urbanism.
3 Civil Engineering Department ,Semnan Branch, Islamic Azad University, Semnan, Iran.
چکیده [English]

Climate is one of the most important issues related to architecture that having it pre-designed can help with thermal comfort. Knowing the climate of a place can play an important role in reducing fossil fuel consumption. Contemporary architecture, irrespective of the climatic and environmental features of a place, causes severe damage to the environment that cannot be reversed. also. Consequences of not paying attention to climate in architecture are inadequate buildings in terms of thermal comfort where fossil fuels should be used. . In the present study, the research and construction of a region's climate through software and the degree of integration of its architecture and climate is a research concern. Therefore, the study of the degree of adaptation of Meymand Earthsheltered buildings was considered as the main issue of the paper. Also, identifying the most influential climatic variables on the formation of thermal comfort in Meymand village was selected as the main objective of the study.
To achieve this goal, case study method based on field measurements was used and specialized software was used as data collection method. The village of Meymand is selected as a case study. Meymand village climate was first constructed in the meteonorm software during the period 1991-2019 in EPW format. The output is then obtained in the Claimate Consultant software, and for the validity and accuracy of the meteonorm software data, the data obtained from the software are in conjunction with the general data of the Babak City Synoptic Station as well as the output data. The data logger is compared and controlled. The temperature and relative humidity data of Meymand village on 11, 12 and 13 August 1398 are measured by field recorders using a data logger. The data from the data logger is controlled with the data from the Babak Synoptic Station and after the accuracy of the data logger, the software output is finally compared with the data logger. The results confirm the accuracy of the software and, after the meteonorm climatic output accuracy, the Meymand village climate EPW file is entered into the Climate consultant software for analysis and analysis. Be. Charts were also used as data analysis software.
The results showed that the most influential climatic variable on the formation of Meymand EarthSheltered structures is the temperature component. And the thermal mass was the ratio of the opening to the wall, the thickness of the walls and the shades of the shapes. The least attention was paid to the orientation of the buildings towards sunlight, probably due to the natural texture of the village. Also, buildings with simultaneous south or southeast orientation with respect to sunlight, topographic midline elevation, planar square shaft and maximum soil penetration depth were selected as the most climate-friendly buildings in terms of thermal comfort.
It was found that the climatic element of temperature was considered to be the most influential component on the formation of Meymand Earthsheltered structures. Therefore, after reviewing the architecture of the village of Meymand, it was found that most of the buildings in Meymand are in accordance with the climatic conditions of using heat mass to delay heat and cold at different times of the year, the square shape of the plan and finally the cubic fit. As it creates compact forms and helps to accelerate cold and warming of the space, the extruder shells make the extruder easy to contact, with a good ratio of the opening to the wall surface which minimizes It is possible and plays an important role in the thermal stability of the interior, the thickness of the walls, sometimes the walls between the two buildings. Considering the climate variables of temperature, radiation, precipitation, wind and relative humidity, it can be said that most architecture corresponds to climate with buildings with south-eastern and southern orientation towards sunlight, mid-level alignment. Topographies, with dense square shapes and cubic proportions, and ultimately with soil penetration depth, are most likely to result in thermal comfort at different times of the year. In summary, it can be said that the rate of compliance of the Earthsheltered structures of the village of Meymand with its climate is acceptable and this has caused that despite its thousands of years of construction, it is still stable and thermally desirable.

کلیدواژه‌ها [English]

  • climate"
  • " Thermal Comfort"
  • " Meymand's Earthsheltered buildings"
  • " Software"
  • "Validation
  1.  

    1. Alijani, B., and Kaviyani, M., 2007, Basics of meteorology, Samt Press, Edition 17, 592 Pages.
    2. Ashrae standard 55-2017, 2017, Thermal environmental conditions for human occupancy. American society of Heating. Refrigerat-ing and Air-conditioning Engineers, Inc, Atlanta Ga.
    3. Baghaei Daemei, A., Eghbali, S-R., and  Mehrinejad Khotbehsara, E., 2019,Bioclimatic design strategies: A guideline to enhance human thermal comfort in Cfa climate zones, Journal of Building Engineering, Volume 25, 100758.
    4. Bodach, W., and Lang, J., 2014, Climate responsive building design strategies of vernacular architecture in Nepal, Energy Build. 81, pp. 227–242.
    5. Ciobanu, D., Eftimie, E., Jaliu, C. 2014. The Influence of Measured/simulated Weather Data on Evaluating the Energy Need in Buildings, Energy Procedia, Volume 48, Pages 796-805.
    6. Farajzadeh. Asl, M., Ghorbani, A., and Lashkari, H., 2008, Survey of Sanandaj Architecture Adaptation to its Climatic Conditions by Mahani Method, Journal of the Teacher of Humanities, 12(2), pp. 161-180.
    7. Habibi Khamene, M., and Mohammadi, H., 2013, Study of Architecture of Tehran City Buildings by Climatic Elements (Case Study: District 5 Municipality), Geographical Land Quarterly, 11(41), pp. 51-64.
    8. Hatami Varzaneh, E., Amini, M., and Bemanian, M., 2014, Impact of Hot and Arid Climate on Architecture (Case Study: Varzaneh Jame Mosque), Procedia Engineering 94, pp. 25 – 32.
    9. Hatwaambo, S., Jain, P, Perers., and Karlsson, B. 2009, Projected beam irradiation at low latitudes using Meteonorm database, Volume 34, Issue 5, Pages 1394-1398.
    10. Heidari, Sh, 2015, planning and managing energy resources, University of Tehran Press, Edition 2, 197 Pages.
    11. Huang, X., Xiaoli, M., and  Qingyuan Zh, 2019, Effect of building interface form on thermal comfort in gymnasiums in hot and humid climates, Frontiers of Architectural Research, Volume 8, Issue 1, pp. 32-43.
    12. Javadiyan, R., and  Nemati, M., 2018, nvestigation of thermal comfort in architectural adaptation to climatic conditions in Semnan, Journal of Geographic Information System Usage and Remote Sensing in Planning, 9(1), pp. 74-90.
    13. Kaasalainen, T., Mäkinen, A, Lehtinen, T, Moisio, M and Vinha, J., 2020, Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates, Journal of Building Engineering, Volume 27, 100996.
    14. Kameni Nematchoua, M., Yvon, A, Kalameu, O, Asadi, S, Choudhary, R., and Reiter, S. 2019,  Impact of climate change on demands for heating and cooling energy in hospitals: An in-depth case study of six islands located in the Indian Ocean region, Sustainable Cities and Society, Sustainable Cities and Society, Volume 44, Pages 629-645.
    15. Kamyabi, S., Doustmohammadi, M., and Pahlavani, A., 2010, The Role of Climatic Elements in Traditional Space Architecture (Semnan City), Regional Conference of Iranian House, Gonbad Kavous, Islamic Azad University, Gonbadkavos Branch.
    16. Kamyabi, S., 2015, Implementation of Climate Classification System on the Architecture of Khorasan Razavi Cities, Quarterly Geography of the Land, 13(50), pp. 91-105.
    17. Kasmaee, M., 1993, Iran Climatic Zoning - Housing and Residential Environments, Building and Housing Research Center Press, Edition 1, 500 Pages.
    18. Kazemi, A., Atayi, H., and Tavousi, T., 2008, Climatic and Architecture of New Isfahan Schools, Geography and Development Quarterly, 6(11), 97-114.
    19. Khodabakhshian, M., 2012,  The typology of Earth- sheltered Buildings in arid climates of Iran, Doctoral dissertation on architecture, Islamic Azad University, Science and Research Branch, Tehran.
    20. Memarian, Gh., 1996, Introduction to Iranian residential architecture, Iran University of Science & Technology Publications, Edition 1, 448 pages.
    21. Moradi, S., 2007, Regulating environmental conditions, Shahidi Press, Edition11, 268 pages.
    22. Motealleh, P., Zolfaghari, M., and Parsaee, M., 2018, Investigating climate responsive solutions in vernacular architecture of Bushehr city, HBRC Journal, 14, pp. 215-223.
    23. Namaziyan, A., 2010, Principles of using sunlight in architectural design (adjusting architectural requirements), Shahid Beheshti University Press, Edition 1, 332 Pages.
    24. National Geotourism Plan Report, The rocky village stays, 2008, retrieved from National Geosciences Database of Iran Web site, www.ngdir.ir.
    25. Nikghadam, N., Mofidi Shemirani, S. M., and Tahbaz, M., 2012, Analytical Comparison of Climate Zones of Southern Regions of Iran by koppen-Traverta Method and Givoni Comfort Criteria, Journal of Architecture and Urban Development of Utopia, 15, pp. 119-130.
    26. Piquer, A., 2003, Strategy for Sustainable Development of the Built Environment for the Mediterranean Climate, University of Strathclyde.
    27. Razjouyan, M., 1988, Comfort in a climate-friendly architecture, Shahid Beheshti University Press, Edition 1, 224 Pages.
    28. Salehi, B., Ghanbaran, A., and Ferdowsian, S. 2017, are examining the status and formulation of climate - friendly design criteria in Ilam Residential Buildings (Using the Mahani Method), Ilam Extension Science Quarterly, Eighteenth period, No 29 and 57, pp 105-117.
    29. Sam, M., Hui. 2007, Sustainable building technologies for hot and humid climates, in: Hong Kong and Hangzhou Seminar for for Sustainable Building, pp. 1-6.
    30. Shaeri, J., Yaghubi, M, AliAbadi, M., and VakiliNezhad, R. 2017, Investigation of Temperature, Relative Humidity and Wind Flow Rate in Traditional Bushehr Residential Buildings in Heat Season, Journal of Fine Arts - Architecture and Urban Development, Volume 22, Number 4, pp 93-105.
    31. Shateriyan, R, 2008, Climate and architecture, Azar-Portrait of knowledge Press, Edition 5, 680 Pages.
    32. Tavassoli, M., 1981, Urban Construction and Architecture in Warm and Dry Climate of Iran, Department of Urban Planning and Regional Planning, Faculty of Fine Arts, University of Tehran, Edition 4, 134 Pages.
    33. Xiong, Y., Liu, J., Kim, J., 2019, Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate, Building and Environment, Volume 165, 106393.
    34. Yaran, A., and Mehranfar, A., 2013, Appropriate climatic patterns in low-lying residential textures (comparative study of cities with temperate climates: Washington DC, Richmond, Virginia Beach, Antalya, Rasht, Seoul, Ni Gata), Journal of Garden view, 27(10), pp. 3-14.