بررسی اثر تغییر اقلیم برکیفیت انگور بی دانه سفید (مطالعه موردی: ایستگاه هواشناسی کشاورزی گلمکان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم محیطی-پژوهشکده انگور وکشمش-دانشگاه ملایر-ایران/ کارشناس -هواشناسی خراسان شمالی-ایران

2 پژوهشکده اقلیم شناسی

3 دانشکده منابع طبیعی ومحیط زیست، دانشگاه ملایر ؛ایران

4 4- دانشیار،دکتری باغبانی، عضو هیت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین،ایران

چکیده

از اثرات عمده تغییر اقلیم، تاثیر آن بر کیفیت محصولات کشاورزی می‌باشد و انگور یکی از محصولات باغی استراتژیک کشاورزی می‌باشد. مقادیر دما و بارش روزانه ایستگاه گلمکان براساس مدل HadCM3 در دوره پایه (2005-1987) و آینده نزدیک (2050-2020) تحت سناریوهای  RCP8.5وRCP4.5 با استفاده از روش ﻋﺎﻣﻞ ﺗﻐﻴﻴﺮ، ریزمقیاس شدند سپس با استفاده از سه سری داده‌های پایه هواشناسی، ریزمقیاس نمایی و کیفیت مشاهداتی انگور، کیفیت انگور برای آینده با بکارگیری شبکه عصبی پرسپترون در Matlab 2019A ﺷﺒﯿﻪ ﺳﺎزی شده است. مدل اقلیمی، اﻓﺰاﯾﺶ دﻣﺎ و ﮐﺎﻫﺶ ﺑﺎرﻧﺪﮔﯽ در آینده را تحت سناریوهایRCP8.5  وRCP4.5 نسبت ﺑـﻪ دوره ﭘﺎﯾﻪ نشان داد. دﻣﺎی حداکثر به ترتیب 2، 3 و 2.7 درجه سانتی گراد افزایش و دﻣﺎی حداقل به ترتیب 2.9 و1.8 درجه سانتی گراد افزایش و ﺑﺎرش به ترتیب
49 و30 درصد کاهش را دارد. هر یک از متغیرهای مستقل دمای کمینه، بیشینه، و بارش با هر یک از متغیرهای وابسته سن درخت، قند، وزن خوشه، اندازه خوشه، طول میوه، عرض میوه، اسیدیته، pH و TSS رابطه معناداری را بر پایه آزمون پیرسون نشان می‌دهند. تحت هر دو سناریو وزن خوشه، اندازه خوشه، طول میوه، عرض میوه، قند، pH، TSS بریکس، اسیدیته و وزن حبه به صورت کاهشی پیش بینی می‌شود. در RCP8.5 میزان تغییرات بیشتر از RCP4.5 می‌باشد. در خصوصیات رنگ آبمیوه، رنگ گوشت، طعم میوه، انبارداری، بازارپسندی و حمل و نقل در دو سناریو بدون تغییر است. آزمون T-Test تغییر در متغیرهای pH، قند، اسیدیته، وزن خوشه، طول میوه و طول در عرض خوشه در دو سناریو معنادار بوده است. متغیرهای وزن حبه و عرض میوه در دو سناریو 4.5 و 8.5، اندازه خوشه سناریو 8.5 و طول در عرض حبه سناریوی 4.5 فاقد تغییرات معنی داری است. نتایج نشان می‌دهد، دراثر افزایش دما و کاهش بارندگی در اقلیم آتی، برخی متغیرهای کیفت انگور در آینده با روند کاهش معنی داری مواجه خواهند شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Climate Change on the Quality of White Seedless Grapes (Case Study: Golmakan Agricultural Weather Station)

نویسندگان [English]

  • Ahmad Alizadeh 1
  • Iman Babaeian 2
  • Hamid Nouri 3
  • Mohammad Ali Najatian 4
1 Environmental Sciences Department-Grape and Grape Research Institute-Malayer-Iran University / Expert-Pathologist of Northern Khorasan-Iran
3 Faculty of Natural and Environmental Sciences, Malayer University; Iran
4 4- Scientific member of Agricultural and Natural Resources Research and Education Center of Qazvin Province, Iran
چکیده [English]

Iintroduction
The purpose of this articleCheck it outThe effects are wider on temperature and rainfall parameters AlsoIf any of these islamic parameters qualifyGrapesWhite seed in Golmkan area of Khorasan Razavi.
One of the major effects of climate change is its impact on the quality of agricultural products. Grapes are also one of the strategic agricultural horticultural products.And the semi-arid climate of Iran is highly vulnerable to future climate change, so it is an appropriate and low-cost alternative to this type of study to achieve grape crop responses to climate change by developing modeling techniques.Golmakan, a city of Golbahar section of Chenaran city in Razavi Khorasan province, 45 kilometers from Mashhad, covers an area of 2000 thousand hectares and is 1176 meters in height at 36, 29 and 59.17 meters in height. According to the Cold Desert dry climate, the climate is also classified as Cold Dry by climate.
Materials andmethods
Currently the customer is producing equipment for the three-phase circulation converter of the Air-Ocean Circuit.What are the rules (provided by mathematical relations).Headcm3 model, designed and studied in the country by Ngelis and the Hadley Center Institute.And 360 days suitable for RCP8.5 and RCP4.5 scenarios.Daily temperature and precipitation values based on Hadcm3 models in baseline and future under RCP4.5, RCP8.5 scenarios. in a more complete way, the DownscalingWith the use of the change factor approach for Golmakan region, were scaled And using station data, scaled Downscaling to baseline quality by Perceptron Neural Network in A2019 Content for the Future.Multilayer neural network approach was used in this study. Multilayer neural networks have three input, middle and output segments. The middle layer corresponds to constraints. The first layer is removed from the middle section, extra data or out of the dataset; in the second layer, the data is normalized using operational definition.After defining variables and intermediate layers, the quality data is input to the neural network through the input layer and after performing the middle layer corrections, using the function definition, they exit the neural network output layer.This output consists of two parts: the first part teaching (or learning) and the second part exam. In this study, 70% of the data were used in the training section and 30% in the default test section. Pearson correlation test and Spearman and Chi-square tests were used to assess the relationship between each of these variables.In both sections, there was a significant relationship between the quality variables and the quantitative variables.Therefore, descriptive tests were used to assess the relationship between each of these variables.These tests included the Pearson correlation test and Spearman and Chi-square tests.After knowing the positive relationship between grape quality variables and basic meteorological data, the simulation process continues.
Results and Discussion
Climate models increasing temperature and decreasing rainfIn the future under RCP4.5, RCP8.5 scenarios Shows the ratio to the baseline period.The maximum temperature increased by 3.9 and 4.7 ° C, respectively, while the minimum temperature increased by 3.8 and 4.4 ° C, respectively, and the rainfall decreased by 0.3 and 0.8%, respectively.Pearson test showed a significant relationship between the variables.That is, each of the independent variables included min, max temperature, and precipitation Each of the dependent variables represented tree age, sugar content, panicle weight, panicle size, fruit length, fruit width, acidity, pH and TSS. Both scenarios represented panicle weight, panicle size, fruit length, fruit width, sugar, HP, TSS, Brix, acidity and weight of berries. It is predicted to decrease.In RCP8.5, the change rate is greater than in RCP4.5. Features: Juice color, meat color, fruit flavor, warehousing, marketability and transportation are unchanged in two scenarios.T-test for most variables: pH, sugar, acidity, panicle weight, fruit length and panicle length were significant in two scenarios.In the variables of berry weight and fruit width in two scenarios 4.5 and 8.5, cluster size of scenario 8.5 and length in berry scenario 4.5 were not significant.
Conclusion
The results show that as a result of rising temperatures and decreasing rainfall in the future climate, some components of grape quality will change in the future.Such studies provide the opportunity for agricultural managers and practitioners in the relevant agencies to take appropriate measures, such as the proper location of gardens, to determine appropriate and appropriate future climate patterns to mitigate the potential adverse effects of new methods and practices. Provide adaptation to new and changing climate conditions
Key words: Climate Change, Model HadCM3, RCP5,White Grape, Network Neural

کلیدواژه‌ها [English]

  • HADCM3 Model
  • IPCC Scenario
  • Network Neural
 
Adab, H., 2005, Modeling Estimation of Autumnal Rape Product Using Multivariate Regression in Gis Environment.Graduate Diploma, Tarbiat Modarres University, Tehran.
Adab, H. Farajzadeh, M. Filechash, I. and Esmaeili, R., 2013, Preparation of autumn canola seed yield map using Perceptron's neural network in Sabzevar city. Geospatial Space Magazine, Azad University of Ahar, No. 41, spring 1392, pp. 171-180.
Alizadeh, A., 1389, Climate and meteorological agriculture, First Edition. Astan Quds Razavi Publishing House.
Ashofteh, P. and Masah Bavani, A., 2008, Influence of Uncertainty on Climate Change in the Future Periods of the Case Study of the Aydoghmoos Basin of East Azarbaijan . Third Conference on Water Resources Management of Iran, Tabriz.
Azizi, G and Yarahmadi, D., 2003, Investigation of the relationship between climatic parameters and dryland wheat yield using regression model Case Study: Sila Khor Plain. Journal of Geographical Research, No. 35 (44), Tehran University.
Atlanta, F., 2016, Grape quality forecast in France for 2016-2040, Quarterly forecast of meteorological data using data mining techniques, third year. Seventh edition, No. 17, 184-173.
Bannayan, M. and Hoogenboom, G., 2008, Weather Analogue A Tool for Real-Time Prediction of Daily Weather Data Realizations Based on a Modified k-Nearest Neighbor Approach. Environmental Modelling and Software, 23(6), 703-713.
Block Azari, S. Masah Bavani, A. Mirsane, M. and zebardast, S., 2011, The zonation of changes in the water requirement of crops in the coming periods under the influence of climate change taking into account the uncertainty of climatic models (Plain Hashtgerd).The first national conference on modern issues in agriculture. Islamic Azad University, Saveh, Aban.
Cahill, K., N. LobellL, D., B. Field. C., B. Bonfils, C. and Kayhoe, K., 2007, modeling climate change impacts on wine grape yields and quality in California. Warming climatique, quels impacts probables sur les vignobles Global warming, which potential impacts on the vineyards March, 28-30.
Farajzadeh, M. and darand, M.,2009, Comparison of Linear Regression and Artificial Neural Network Methods in the Estimation of Death Rate as Function of Air Temperature (Case Study of Tehran), Journal of  Measurement from Farhang University of Tarbiat Modares, Volume 12, Number3.
Farajzadeh, M. and Zarrin, A., 2000, Modeling the yield of rainfed wheat products in relation to agricultural climatology parameters in West Azerbaijan Province. Master thesis of Tarbiat Modares University.
Ghasemi, E. Fatahi, E. and Babaei, U,.S, 2013, The Impact of Climate Change on the Uncertainty Delivery of Models of General Circulation of the Baroque.Journal of Arid Regions Geographic Studies, Fourth Year, No. 13, Autumn 2013, pp.37-53.
Jones, G., V., 2006, Past and Future Impacts of Climate Change on Wine Quality. Journal of International Wine Business Research Conference, Montpellier, 6-7-8 July working paper.
Jones, P., D. and Hulme, M., 1996, Calculating regional climatic times series for temperature and precipitation methods and illustrations. International journal of climatology, 16, 361-377
Masah Bavani, A., 2006, Risk Assessment of Climate Change and Its Impact on Water Resources, Case Study of Zayandeh-rud basin Isfahan. Doctoral dissertation, Water Engineering Research Institute, Tarbiat Modares University, Tehran.
Morison, J. I., L. and Morecroft, M., D., 2006, Plant growth and climate change. Blackwell Publishing Ltd. P. 239.
Schwartz, M., D., 2003, Phenology: An integrative environment science. Kluwer Academic Publishers.
Mozafari, G., 2003, Fundamentals of Agricultural Meteorology. Translation Nick Pandar Publishing.
Peter, T. Lubica, B. and Alessandro, S., 2018, Artificial Neural network models. Journal of Neural network, 4 (20). 26-40.
Ruiter, A., 2012, Delta Change approach for CMIP5 GCMs. Royal Netherlands Meteorological Institute, Trainee report, 336p.
Shawkar, M., 2018, Study on the Effects of Climate Change on the Quality of Grapes in Egypt. Journal of German Meteorological Studies, First Year, Number 3, Pages. 25-14.
Sallis, P. Shanmuganathan, S. and Narayanan, A., 2010, Micro Climate Variations Related toVineyard Crop Quality. Journal of World Automation Congress TSI Press.
Shanmuganathan, S. Sllis, p. and Narayanan, A., 2009, Unsupervised Artificial Neural Nets for Modelling theEffects of Climate Change on New Zealand Grape Wines. 18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July.
Dayhoff, J., E., 1990, Neural Network Principles. Prentice-Hall International, U.S.A.
Khanna, T., 1990, Foundation of neural networks. Addison-Wesley Publishing Company, U.S.A
Wilby, R., L. and Harris, I., 2006, a frame woke for assessing uncertainties in climate change impact. Low flow scenarios for the River Thames, UK, Water resources research, Vol.42, W02419, 10 PP.