بررسی ارتباط متغیرهای اقلیمی و سطح آبدار تالاب جازموریان با استفاده از پردازش تصاویر ماهواره‏ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 دانشجوی دکتری سازه‏های آبی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

بهره‏برداری بی‏رویه از منابع آبی، مدیریت نامناسب آب، خشکسالی و افزایش تقاضا، تاثیر قابل ملاحضه‏ای بر وضعیت تالاب فصلی جازموریان داشته است. همزمان با کاهش سطح آبدار تالاب، سطح مرطوب آن خشک و پوشش گیاهی مشرف به تالاب ضعیف و در نهایت خاک تالاب مستعد تولید ریزگرد می‏شود. بررسی وضعیت کمی سطوح آبدار تالاب در گذشته و ارتباط آن با متغیرهای اقلیمی در احیا و نگهداری تالاب نقشی مهمی دارد. در این مطالعه سطح آبدار تالاب فصلی جازموریان طی سال‏های 1365 الی 1396 با استفاده از تصاویر ماهواره‏ای سری لندست (سنجنده‌های  MSS، TM، ETM+ و OLI) مورد بررسی قرار گرفت. پس از انجام پردازش‏های لازم بر روی تصاویر ماهواره ای، سطح آبدار تالاب استخراج شد. نتایج مطالعه نشان داد که تالاب جازموریان فصلی است که معمولاً از اواسط زمستان تا اوایل بهار آبگیری می‏شود و در اواخر بهار تا اوایل تابستان به طور کامل خشک می‏شود. با بررسی سطوح آبدار در ماه‏های مختلف طی دوره مورد بررسی، مشخص شد که تالاب طی فصل زمستان بهترین وضعیت خود را از لحاظ آبگیری تجربه کرده است. نتایج مطالعه طی دوره مورد بررسی نشان داد که بارش متوسط اطراف تالاب نسبت به دبی وردی به تالاب از سمت رودخانه های هلیل و بمپور تاثیر بیشتری در آبگیری تالاب داشته است. همچنین جریا‏ن‏های سیلابی قابل توجه در رودخانه های هلیل و بمپور نیز سبب آبگیری تالاب شده‏اند. علاوه بر این در دوره مورد بررسی بر اساس 62 سری داده مشاهداتی (46 سری داده جهت پیش بینی رابطه و 16 سری داده جهت صحت سنجی رابطه) و با به کارگیری نرم افزار SPSS،  یک رابطه چند جلمه‏ای نمایی بر حسب متغیرهای فوق الذکر برای پیش بینی سطح آبدار  ارائه شد که می‏توان در برنامه‏ریزی مدیریت و احیای تالاب از آن بهره جست. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of climatological variables and surface water dynamics of Jazmurian seasonal wetland by using of Satellite Image Processing

نویسندگان [English]

  • Mohhamad Bagher Rahnama 1
  • Farzaneh Qaderi Nasab 2
1 Associate Professor, Water Engineering Department, Agricultural Faculty, Shahid Bahonar University of Kerman, kerman, Iran.
2 PHD student, Water Engineering Department, Agricultural Faculty, Shahid Bahonar University of Kerman
چکیده [English]

Introduction
Jazmurian wetland is located in an endorheic basin at the southern edge of the Dasht-e-Lut. Several factors such as high evaporation, over exploitation of groundwater, dam construction on the rivers feeding the wetland, and the effect of drought and climate changes have caused this wetland to dry out during the recent years. Investigation of dynamic monitoring of water surface area in past and its relation with climatological variation has an important role for reclamation and conservation of wetlands. This study investigated the water body of Jazmurian seasonal wetland from 1972 to 2017 by Landsat satellite images. The temporal monitoring of wetland water area was performed using Landsat Data Series (MSS, TM, ETM+, and OLI). Further, the relationship between wetland water area, rainfall, as well as inflow water the wetland in this period was investigated.
Materials and methods
The meteorological data used included information of 3 evaporation stations for measuring evaporation and 16 rainfall stations for measuring precipitation. Due to lack of hydrometric stations surrounding the wetland, Kahnak Sheybani (Kahn) on Halil River and Bampur (Bamp) on Bampur River were used for measuring inflow water to the wetlands. Note that Kahn and Bamp are about 200 km and 150 km away from the wetland, respectively. In this study Landsat data series (MSS, ETM, ETM+ and OLI/TIRS) between 1987-2017 were downloaded from EarthExplorer. All study regions were within Path/Row 158/41. Geometric and radiometric corrections were done for all used images. After that Normalized difference water index (NDWI) was used to extract water bodies from remotely sensed imagery. NDWI values were derived using combinations of the NIR and green bands as (McFeeters 1996).  In this study an appropriate threshold for identifying water features was achieved through trial and error, with comparison to base maps made using visual commentary and field visit. A series of field surveys of water body was done at the same time as the satellite pass occurred using a Garmin GPS device on 9 March 2017, 10 April 2017, and 26 April 2017. Random sample points of the boundary of water body were identified for comparison with the results obtained by NDWI. For visual interpretation of water features, because of strong absorption of near-infrared spectrum by water and strong reflection of vegetation and dry soil.  Moreover the relation between wetland water body with climatological variables such as evaporation, precipitation and water inflow to the wetland was determined. Finally in the study period based on data series of observation (60 series) and using SPSS software an equation is presented. That can be used in planning, management and restoration of wetlands
 
Results and discussion
The near-infrared (NIR) band visual interpretation as well as the optimized threshold value of -0.085 was applied to the NDWI image to discriminate between water and non-water surfaces. A number of control points were used to identify the optimized thresholds for NDWI reclassification in water/non-water. Which showed that the NDWI index has a good performance. Awareness of flooding and the drying trend of the wetland will help in its restoration. If we know which areas of the wetland are drying out earlier and the soil moisture is out of reach sooner, that is to say, they are more susceptible to dust generation.  According to field observations, it is clear that the slope is very gentle at the extreme end of the basin. As already mentioned, all the surface water drains towards the wetland. On the other hand, extreme floods in the past have led to considerable sediments moving toward the wetland, where fine-grained sediments have reduced the slope and permeability of the wetlands. In other words, even during a slight precipitation around the wetland, a noticeable surface area of the wetland will become wet and water will appear on the surface of the wetland. Obviously, the vast surface area and the low water level and the high potential of evaporation in the region are not favorable for water to remain on the wetland surface.  It also seems that there have been no significant changes in the topography of the eastern part of the wetland, with low rainfall mostly appearing in it.  Also the results shows there is a direct relationship between rainfall on the wetland and its water area. On the other hand, rainfall has the maximum effect on the wetland water body. In addition to rainfall, water inflow to the wetland from Halil and Bampour River had an effective role in expanding the water area of the wetland.
 Conclusion
Investigation of dynamic monitoring of water surface area in past and its relation with climatological variation has an important role for reclamation and conservation of wetlands. This study investigated the water body of Jazmoriyan seasonal wetland from 1986 to 2017 by Landsat satellite images. Further, the relationship between wetland water area, rainfall, as well as inflow water the wetland in this period was investigated. The results showed in addition to feeding the wetland by Halil and Bempour River, the rainfall around the wetland plays an important role in flood duration of the Jazmurian wetland. Moreover the relation between wetland water body with climatological variables such as evaporation, precipitation and input flow was determined.

کلیدواژه‌ها [English]

  • Jazmurian seasonal wetland
  • Landsat Data series
  • Wetland management and restoration
  • water body
 
Baddock, M.C., Bullard, J.E. and Bryant, R.G., 2009, Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment 113, No.7, pp.1511-1528.
Campos, J.C., Sillero, N. and Brito, J.C., 2012, Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara–Sahel transition zone. Journal of Hydrology, 464, pp.438-446.
Dai, C., Howat, I.M., Larour, E. and Husby, E., 2019, Coastline extraction from repeat high resolution satellite imagery. Remote Sensing of Environment, 229, pp.260-270.
Du, Z., Bin, L., Ling, F., Li, W., Tian, W., Wang, H., Gui, Y., Sun, B. and Zhang, X., 2012, Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. Journal of Applied Remote Sensing 6 No. 1, p.063609.
Fang-fang, Z., Bing, Z., Jun-sheng, L., Qian, S., Yuanfeng, W. and Yang, S., 2011, Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environmental Sciences 11, pp.1482-1487.
Fisher, A., Flood, N. and Danaher, T., 2016, Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, pp.167-182.
Gautam, V.K., Gaurav, P.K., Murugan, P. and Annadurai, M., 2015, Assessment of Surface Water Dynamics in Bangalore Using WRI, NDWI, MNDWI, Supervised Classification and KT Transformation. Aquatic Procedia, 4, pp.739-746.
Hassanzadeh, E., Zarghami, M. and Hassanzadeh, Y., 2012, Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management 26, No. 1, pp.129-145.
Ji L, Zhang L, Wylie B (2009) Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 75(11):1307-17
10. Karim, M., Maanan, M., Maanan, M., Rhinane, H., Rueff, H. and Baidder, L., 2019, Assessment of water body change and sedimentation rate in Moulay Bousselham wetland, Morocco, using geospatial technologies. International journal of sediment research 34, No. 1, pp.65-72.
11. Ma, M., Baskin, C.C., Yu, K., Ma, Z. and Du, G., 2017, Wetland drying indirectly influences plant community and seed bank diversity through soil pH. Ecological Indicators, 80, pp.186-195.
12. Ma, M., Ma, Z. and Du, G., 2014, Effects of water level on three wetlands soil seed banks on the Tibetan Plateau. PloS one 9, No. 7, p.e101458.
13. Ma, M., Zhou, X. and Du, G., 2011, Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau. Plant and soil 346, No. 1-2, pp.19-28.
14. Martins, V.S., Kaleita, A., Barbosa, C.C., Fassoni-Andrade, A.C., de Lucia Lobo, F. and Novo, E.M., 2019, Remote sensing of large reservoir in the drought years: Implications on surface water change and turbidity variability of Sobradinho reservoir (Northeast Brazil). Remote Sensing Applications: Society and Environment, 13, pp.275-288.
15. Masocha, M., Dube, T., Makore, M., Shekede, M.D. and Funani, J., 2018, Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: A comparison of multiple water indices. Physics and Chemistry of the Earth, Parts A/B/C, 106, pp.63-67.
16. McFeeters, S.K., 1996, the use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing 17, No. 7, pp.1425-1432.
17. Rahdari, V., maleki, S., Rahdari, M., pakniyat, D., 2014, Preparing a map of the ecological resources of the jazmorian Wetland and introducing it as one from areas protected by the Environmental Protection Agency using RS and GIS, Environmental Protection Agency of Sistan and Baluchestan Province(Persian)
18. Samiei, M., Ghazavi, R., Pakparvar, M., Vali AA., 2017, The effect of climate  change  on  Maharlo  lake  level  change  using satellite  image  processing.  RS & GIS for Natural Resources 8, No.1, PP.1-18. (Persian)
19. Sarp, G. and Ozcelik, M., 2017, Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11(3), pp.381-391.
20. Song, C., Ke, L., Pan, H., Zhan, S., Liu, K. and Ma, R., 2018, Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis. Science Bulletin 63, No. 11, pp.708-716.
21. Sun, F., Sun, W., Chen, J. and Gong, P., 2012, Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International journal of remote sensing 33, No. 21, pp.6854-6875.
22. Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., Zhang, F., Yang, J., Abulimiti, A. and Liu, J., 2019. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177, pp.189-201.
23. Watson, C.S., King, O., Miles, E.S. and Quincey, D.J., 2018. Optimising NDWI supraglacial pond classification on Himalayan debris-covered glaciers. Remote sensing of environment, 217, pp.414-425.
24. Wilson, E.H. and Sader, S.A., 2002, Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment 80, No. 3, pp.385-396.
25. Xu, H., 2006, Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing 27, No. 14, pp.3025-3033.
26. Zou, Z., Dong, J., Menarguez, M.A., Xiao, X., Qin, Y., Doughty, R.B., Hooker, K.V. and Hambright, K.D., 2017, Continued decrease of open surface water body area in Oklahoma during 1984–2015. Science of the Total Environment, 595, pp.451-460.