ارزیابی مدل‌های سری زمانی در پیش‌بینی بارش فصلی مبتنی بر داده‌های سنجش از دور (مطالعه موردی: اقلیم‌های خشک و نیمه خشک)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی گروه مهندسی آب، دانشگاه فردوسی مشهد

2 استاد گروه علوم و مهندسی آب- دانشکده کشاورزی- دانشگاه فردوسی مشهد

3 استادیار، گروه آمار، دانشگاه فردوسی مشهد

چکیده

بارندگی ازجمله متغیرهایاقلیمی استکهدرمدیریتمنابعآبوکشاورزیدارایاهمیت می­باشد. بر این اساس، هدفاینپژوهشمدل‌سازی پیش‌بینیداده­هایبارش ماهواره­ای TMPA(3B43)دراقلیم­هایخشک و نیمه خشک ایرانبا استفاده از مدل SARIMAدرمقیاس فصلیبودهاست. پس از تصحیح داده‌های ماهانه ماهواره‌ای، مدل­سازی بارش انجام شد. پس از ایستاسازی در واریانس و حذف روند فصلی، با کمک نمودارهای خودهمبستگی و خودهمبستگی جزئی، مدل‌های مناسب به دست آمد. تغییرات ضریب همبستگی بر پایه داده‌های ماهانه از 81/0 تا 9/0 در مناطق مورد مطالعه، تأیید کننده دقت مناسب مدل‌سازی بر اساس تکنیکSARIMAدر این پایه زمانی برای پیش‌بینی فصلی می‌باشد. نتایج شاخص‌های ارزیابی بین مقادیر واقعی و داده‌های حاصل از مدل‌های انتخابی نشان داد اگر داده‌های ماهانه پیش‌بینی شده سپس به داده فصلی تبدیل شود؛ نسبت به استفاده از داده‌های فصلی برای پیش‌بینی فصلی، دارای دقت بالاتری هستند. پسازواسنجیوارزیابیمدل‌هاینهایی، بارش فصلی بر پایه مقیاس ماهانهبرای دوره (2021-2018) پیش‌بینی و با دوره پایه مقایسه شد. در فصل زمستان بر خلاف فصل‌های بهار و پاییز، 3 منطقه کاهش بارش و یک منطقه افزایش بارش داشته و در فصل تابستان در تمامی نقاط، ثبات نسبی و عدم تغییر بارش مشاهده شد. با توجه به متوسط بارش سالانه 4 منطقه مورد مطالعه، در دوره چهار ساله پیش‌بینی به طور میانگین حدود یک درصد کاهش بارش سالانه پیش‌بینی می‌شود. به صورت تفکیکی تغییرات بارش سالانه در پیکسل‌های متناظر مناطق کاشان، سیرجان، بهبهان و زرقان به ترتیب برابر 3/1-، 1/1، 1- و 8/1- درصد خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Time Series Models in Prediction of Seasonal Precipitation Based on Remote Sensing Data (Case Study: Arid and Semi-arid Climates)

نویسندگان [English]

  • Hadi Ghafourian 1
  • Seyed Hossein Sanaei Nejad 2
  • Mehdi Jabbari Nooghabi 3
1 Ph.D. Student., Department of Water Engineering, Ferdowsi University of Mashhad, Iran.
2 Professor, Water Engineering, College of Agriculture, Ferdowsi University of Mashhad
3 Assistant Prof., Department of Statistics, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction:
Rainfall modeling is essential in water resources and agriculture management, especially in arid and semi-arid climates. Problems in generalizing precipitation from a point to a region are the reasons for alternative methods to estimate precipitation, and one of these methods is the use of remote sensing. Across the globe, research is being conducted to evaluate the accuracy of remote sensing precipitation data. Accordingly, the aim of this study is to model the prediction of TRMM Multi-satellite Precipitation Analysis (TMPA-3B43) data in arid and semi-arid climates of Iran, using the SARIMA simulation model for the period of 1998-2017 in seasonal scale.
 
Materials and Methods:
For this study, monthly precipitation data from TMPA 3B43-v7 were selected from two different climates. To ensure the reliability of the results, a completely randomized selection of four regions was made from different provinces and topographic conditions. The TMPA satellite data (3B43-V7) was prepared by the NASA databases during the period of 1998-2017. These data have a time-stamping time resolution and spatial resolution of 0.25 degrees, covering from 50 degrees south to 50 degrees north of latitudes. Satellite pixel data was corrected using the corresponding synoptic station data. Monthly data after correction were aggregated to seasonally data. Spring data from April, May and June, the summer data from July, August, and September, autumn data from October, November, and December, and winter data were obtained from January, February, and March. Using the autocorrelation function (ACF) and partial autocorrelation function (PACF), time series models were determined. The normality of the residuals, the independence of the residuals and the constant of the variance of the residuals was checked out. A general model was fitted to the data to check the accuracy of the selected model. The result showed that the selected model has the least error compared to other models. After calibration and evaluation of the selected models, seasonal precipitation data was predicted based on the monthly scale for the period (2018-2021) and compared with the base period (1998-2017). The evaluation was measured using some statistical indices including AIC, R, MBE, MAE, and RMSE.
 
Results and Discussion:
The correlation coefficient based on monthly data changes from 0.81 to 0.9 in the studied areas which confirms the high accuracy of modeling based on SARIMA technique in monthly data for seasonal prediction. Best model for corresponding pixel of Behbahan station was SARIMA(0,0,1)(1,1,1)12 and SARIMA(0,0,0)(2,1,1)4, Zarghan station was SARIMA(2,0,0)(1,1,1)12 and SARIMA(0,0,0)(2,1,2)4, Kashan station SARIMA(0,0,0)(1,1,1)12 and SARIMA(0,0,1)(2,1,1)4 and Sirjan station SARIMA(1,0,1)(1,1,1)12 and SARIMA(0,0,0)(2,1,1)4 for monthly and seasonal modeling respectively. The mean bias error in the monthly and seasonal periods of the Kashan station corresponding pixel (0.2 and 0.5 respectively) and the monthly period of the Sirjan station corresponding pixel (-0.3) was obtained. Seasonal modeling based on monthly data was compared with seasonal prediction data. In the autumn, the same as the spring season, seasonal precipitation increases in three regions and decreases in one station. In the summer, it was observed relative stability in seasonal precipitation at all points. In winter, unlike the spring and autumn seasons, seasonal precipitation was decreased in three areas.
 
Conclusion:
The results showed that if the predicted monthly data turned into seasonal data, they would be more accurate for seasonal forecasting. Generally, based on annual precipitation, the studied areas will have a relative precipitation reduction of 1.8 mm per year. Regarding the average annual rainfall in the four studied areas, the average annual precipitation is estimated to be decreased by about 1 percent in the study period. Separately, annual precipitation changes are -1.3%, 1.1%, 1%, and 1.8% in Kashan, Sirjan, Behbahan, and Zarghan areas respectively.

کلیدواژه‌ها [English]

  • Prediction Modeling
  • Remote sensing data
  • SARIMA
  • Seasonal precipitation
  1.  

    1. Abdollah Nejad, K. 1394, Forecasting of Monthly Sum-raining by Stochastic Models in Time Series. Journal of Geographical Planning of Space Quarterly, 5 (17): 15-25. (in Persian with English abstract).
    2. Aguilera A.M., Escabias M., Valderrama M.J. 2008. Forecasting binary longitudinal data by a Functional PC-ARIMA model. Computational Statistical & Data Analysis. 52: 3187-3197. doi: 10.1016/j.csda.2007.09.015.
    3. Alavipanah, S.K. 1394. Principles of Modern Remote Sensing and Interpretation of Satellite Images and Arial Photos. Tehran University Pub. Tehran. 782p. (in Persian).
    4. Alizadeh, A. 1386. Principles of Applied Hydrology. Imam Reza University Pub. 7th Edition. Mashhad. 942p. (in Persian).
    5. Asakereh, H. 1386. Climate Change, University of Zanjan Pub. 1th edition, Zanjan, 246p. (in Persian).
    6. Ashgar Tosi, S. 2003. Predicting Drought in Khorasan Province and Optimization the Cropping Pattern for Croping with Drought. M.Sc. Thesis of Irrigation and Drainage Engineering. Ferdowdi University of Mashhad. 106p. (in Persian with English abstract).
    7. Babazadeh, H., Shamsnia, A., Bostani, F., Noroozi Aghdam, E., Khodadadi Dehkordi, D. 1391, Analysis of Drought, Wetness Year and Forecasting of Climate Parameters, Precipitation and Temperature Using Stochastic Methods in Shiraz City, Journal of Geography and Planning, 41: 23-47. (in Persian with English abstract).
    8. Bayazidi, M., Siose Morde, M., Asr Agah, A. 1395, Predicting meteorological drought using time series methods (case study: Salmas Basin), Journal of Environmental and Water Engineering, 4, pp. 346-359. (in Persian with English abstract).
    9. Box, G.E. P., Cox, D. R. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Vol. 26, Issue 2: pp 211–243. doi:10.1111/j.2517-6161.1964.tb00553.x.
      1. Box G.E.P., Jenkins G. 1976. Time Series Analysis, Forecasting and Control, Revised. Holden-Day. San frrancisco, CA. 575p.
      2. Burlando, P., Montanari, A., Ranzi, R. 1996, Forecasting of storm rainfall by combined use of radar, rain gages and linear models, Atmospheric Research, 42(1): 199-216. doi:10.1016/0169-8095(95)00063-1.
      3. Dayal. D., Swain. S., Gautam. A.K., Palmate. S.S., Pandey. A. and Mishra. S.K. 2019. Development of ARIMA Model for Monthly Rainfall Forecasting over an Indian River Basin. World Environmental and Water Resources Congress. May 19–23.
      4. Dickey, D., Fuller, W. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a): 427-431. doi:10.1080/01621459.1979. 10482531.
      5. Eni, D., and Adeyeye, F. J. 2015. Seasonal ARIMA Modeling and Forecasting of Rainfall in Warri Town, Nigeria. Journal of Geoscience and Environment Protection, 3: 91-98.
      6. Farajzadeh, M. 1389. Climatology Techniques, SAMT Pub. Third edition. Tehran. 287p. (in Persian).
      7. Folland, Ch. 1990, Observed Climatic Variation and Change, Climate Change: The IPCC Scientific Assessment. Cambridge University Press. pp 195-238.
      8. Ghafourian, H., Sanaei Nejad, S.H. and Jabbari Noghabi, M. 1399. Validation of a Seasonal Satellite Precipitation Correction Model to Increase the Accuracy of Water Balance in Arid Regions of Iran. Iranian Journal of Irrigation and Drainage. 14(2), 673-685. (in Persian with English abstract).
      9. Gheisoori, M., Soltani-Gerdefaramarzi, S., Ghasemi, M. 1397. Investigation and prediction of the changing trend of climate parameters on Discharge (Case Study: Godarkhosh Subbasin). Journal of Natural Environmental Hazards, 7(17), 137-154. (in Persian with English abstract).
      10. Hansen, J. 1988, Global surface air temperature, Geology Letter, (15), pp 323-326.
      11. Hossein Alizadeh, M., Hassanalizadeh, N., Babanejad, M., Rezanejad, M. 2014. Monthly rainfall prediction using time series pachage in R software (case study: Araz Kose station- Golestan), Journal of Geography and Planning, (2): 1-12. (in Persian with English abstract).
      12. Huffman, G.J. 2018. The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG). NASA Goddard Space Flight Center and Science Systems and Applications. 27th august.
      13. Huffman, G.J., and Bolvin, D.T. 2018. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation. NASA Goddard Space Flight Center and Science Systems and Applications, Inc. 26th April. 51p.
      14. Jamshidi, V. 1989. Evaluation of Temperature and Rainfall in Tehran City by Time Series. M.Sc. Thesis of Statistics. Tarbiat Modares University. 263p. (in Persian with English abstract).
      15. Jones, P., Raper, S., Bradley, R., Diaz, H., Kellyo, P., Wigley, T. 1986, Northern Hemisphere surface air temperature variations: 1851-1984, Journal of Climate and Applied Meteorology, 25(2), pp. 161-179. doi:10.1175/1520-0450(1986)0252.0.co;2.
      16. Karamoz, M., Araghineghad, S. 2005. Advanced Hydrology. Amir Kabir pub. 464p. (in Persian).
      17. Khorrami, M., Bozorgnia, A. 1386. Time Series Analysis with Minitab 14. Sokhan Gostar Pub. 1th edition. Mashhad. 336p. (in Persian).
      18. Khosravi, Y., Belyani, S. and Bayat, A. 1397. Temporal Survey of Annual Precipitation of Shiraz using Time Series Analysis. Journal of Water Resources Engineering, 11(38), 1-14. (in Persian with English abstract).
      19. Mahmud, I., Bari, S. H. and Rahman, T. M. 2017. Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method. Environmental Engineering Research,22 (2): 162-168.
      20. Masoumpour Samakosh, J., Jalilian, A., Yari, E. 2017. The Analysis of Seasonal Precipitation Time Series in Iran. Physical Geography Research Quarterly, 49(3): 457-475. . (in Persian with English abstract).
      21. National Aeronautics and Space Administration (NASA). 2001. TRMM Data Users Handbook, February. 226p.
      22. National Aeronautics and Space Administration (NASA). 2018. Homepage of Rainfall Archives, https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_L3/TRMM_3B43.7/contents.html Visited: 2018/04/10.
      23. Nyatuame, M. and Agodzo, S.K. 2018. Stochastic ARIMA model for annual rainfall and maximum temperature forecasting over Tordzie watershed in Ghana. Journal of Water and Land Development, 37 (1): 127-140.
      24. Niroumand, H. A. 1386. Time Series Analysis. Univariate and Multivariate Methods. Translated from Wei, William W. S (1990). Ferdowsi University of Mashhad Pub. 2th edition. Mashhad. 586p. (in Persian).
      25. Niroumand, H. A. 1389. Time Series Analysis. Translated from Cryer, J. D. (1986). Ferdowsi University of Mashhad Pub. 4th edition. Mashhad. 417p. (in Persian).
      26. Noakes, D., McLeod, I., and Hipel, K. 1985, Forecasting monthly river flow time series. International Journal of Forecasting, 1(2), pp. 179-190. doi:10.1016/0169-2070(85)90022-6.
      27. Paras, D., Mathur, S. 2012, A simple weather forecasting model using mathematical regression, Indian Research Journal of Extension Education Special Issue, (1): 161-168.
      28. Shafaei, M., Adamowski, J., Fakheri-Fard, A., Dinpashoh, Y., & Adamowski, K. (2016). A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of water and land development, 28, 27-36. doi: 10.1515/jwld-2016-0003.
      29. Sharifan, H. and Ghahraman, B. 2007. Evaluation of rainfall forecasting in Golestan province using time series, Journal of Agricultural Sciences and Natural Resources, 14(3): 196-209. (in Persian with English abstract).
      30. Sorooshian, S., Hsu, K., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D. 2000. Evaluation of PERSIANN system satellite based estimates of tropical rainfall, B. Am. Meteor. Soc., 81, 2035–2046. https://doi.org/10.1175/1520-0477(2000)0812.3.CO;2.
      31. Veisipour, H., Samakoush, J., Sahneh, B, and Yousefi, Y. 1389 .Analysis of rainfall and temperature trends prediction using time series models (case study: Kermanshah station). Journal of Geographic. 4(12): 63-77. (in Persian with English abstract).
      32. Wei W.W.S. 1990. Time series analysis: Univariate and Multivariate Methods. Addison-wesley publishing company. New York. 614p.