برآورد توزیع زمانی رخداد تنش‌های گرمایی و سرمایی شدید در فضای باز شهر تهران (مطالعه موردی: منطقه 9)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، پژوهشگاه هواشناسی و علوم جو

2 کارشناس ارشد هواشناسی، پژوهشگاه هواشناسی و علوم جو تهران

3 دانشیار و عضو هیات علمی پژوهشگاه هواشناسی

4 دانشیار، پژوهشگاه هواشناسی و علوم جو تهران

چکیده

شرایط آب‌وهوایی یکی از عوامل مهم و تأثیرگذار بر جنبه‌های مختلف زندگی انسان‌ها به‌ویژه در مناطق شهری پرتردد می‌باشد.در این مطالعه بر پایه شاخص شناخته‌شده‌ی دمای معادل فیزیولوژیکی (PET) محدوده زمانی رخداد تنش­های گرمایی و سرمایی شدید در فضای باز منطقه 9 شهر تهران موردبررسی قرار گرفت. برای این منظور داده­های دما، رطوبت، فشار بخارآب، ابرناکی و سرعت باد ایستگاه فرودگاه مهرآباد تهران برای یک دوره ده‌ساله (2008-2017) از سازمان هواشناسی کشور دریافت و شاخص PET با گام زمانی سه‌ساعته با استفاده از مدل RayMan برای دوره مذکور محاسبه گردید. نتایج نشان داد که تنش­هایی سرمایی بسیار شدید در ماه­های فصل زمستان (دسامبر، ژانویه و فوریه)، آخرین ماه از فصل پاییز (نوامبر) و اولین ماه از فصل بهار (مارس) و تنش­هایی گرمایی بسیار شدید و شدید نیز در ماه­های ژوئن و ژوئیه بیشتر از بقیه طبقات آزاردهنده بوده­اند. منطقه 9 شهر تهران، 86 درصد از کل سال خارج از محدوده شرایط آسایش حرارتی بوده است به‌گونه‌ای که 59 درصد از آن، مرتبط با تنش­های سرمایی (PET) و 27 درصد مرتبط با تنش­های گرمایی با درجات مختلف (PET>23C°) می‌باشد. شرایط نامطلوب در فضای باز تنش­های سرمایی بسیار شدید ماه­های ژانویه، فوریه و دسامبر از ساعت 6 غروب تا ساعت 6 صبح و ازلحاظ تنش­های گرمایی شدید تا متوسط، از دهه آخر ماه مه تا اواخر ماه سپتامبر بین ساعت­های 9 صبح تا 3 بعدازظهر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Time distribution of occurrence of Heat and cold stresses in Tehran City (Case Study: Area 9)

نویسندگان [English]

  • Abbas Ranjbar 1
  • Faezeh Noori 2
  • Mohammad Moradi 3
  • Ebrahim Fattahi 4
1 Associate Prof. of Atmospheric Science and Metrological Research Center
2 Master of Science in Meteorology, Department of Atmospheric Science and Metrological Research Center
3 Associate Prof. of Atmospheric Science and Meteorological Research (ASMERC), Tehran
4 Associate Prof. of Atmospheric Science and Metrological Research Center
چکیده [English]

Introduction
Climatic conditions is one of the most important factors affecting different aspects of human life, especially in urban areas and affects social and economic sectors. Establishing a thermal balance between the human body and the environment is one of the primary needs for health and comfort. Human thermal comfort conditions can be evaluated by using various indices based either on simple empirical approaches or on more complex and reliable human-biometeorological approaches. Human thermal comfort conditions with a single parameter or thermal indices derived from experimental equations, cannot fully evaluate thermal comfort conditions. In this study, we tried to investigate the temporal distribution of heat and cold stress events based on the physiological equivalent temperature (PET) index of Tehran in 9th area.
Materials and methods
Determining suitable weather conditions for outdoor presence (in terms of heat and cold stresses) can be an important factor in reducing mortality and providing human comfort in these areas. Therefore, the focus of this paper is to examine the weather conditions in Tehran 9 area. The establishment of Tehran's Mehrabad Airport in this area as well as the presence of the western terminus on the northwest side of Azadi Square has made it one of the busiest areas in Tehran. The evaluation was based on statistics and information from Tehran's Mehrabad Airport synoptic station located on the southwestern side of zone 9. In this paper, to determine the time range of occurrence of heat and cold stresses, temperature data, relative humidity, water vapor pressure, wind speed, and cloudiness on a scale of hourly during 2008 to 2017 were obtained from the Meteorological Organization  and PET index was calculated using RayMan Model and analyzed on annual, seasonal, monthly, daily and hourly scales.
Results and discussion
The PET index for Tehran 9 area was calculated from January 2008 to December 2017 using data from Tehran Mehrabad Synoptic Station. The results showed that in this decade, the thermal comfort, frequency of PET index accounted for only 12.91% of the whole period. Much of the analyzed data belong to cold stress classes of less or higher, with 54.62% being the most abundant. The rest of the data are in the range that according to the PET index classification, are slightly warm to hot and 27% of the whole period is affected by different heat stresses. The results showed that extreme cold stresses began in the second decade of October and continued until the first decade of April. This class of cold stresses completely disappears between the second decade of April to the first decade of November. Initial surveys showed that the highest percentage of very severe cold stress was distributed in the first 10 days of January. This percentage is slowly declining as temperatures rise in the coming days, reaching their lowest level in the first decade of April. The percentage of severe, moderate and mild cold stresses decreased by 11% over the whole period from 23% to 12%. The range of severe cold stresses started from the second decade of October and was steadily stable in the study area until the third decade of April. Maximum and minimum percentages of severe cold stress were in the second decade of March (35%) and the first decade of October (2.5%). Moderate cold stresses began 20 days earlier than severe cold stresses and continued until the second decade of May. According to the figures obtained from the PET index, it peaked at 46% in the second decade of April. Slight cold stresses that started in the third decade of April and continued until the third decade of June. Extreme heat stress is distributed only in June, July, August and September. Frequency of heat stress increases significantly in July, especially in the second decade. The frequency of this stress in the first 10 days of June increased by 1.3% and increased to 37.5% in the second decade of July. The convergence frequency of the PET index is observed in different percentages between the third decade of March to the second decade of October.
Conclusion
Area 9 of Tehran, 86% of the total year was outside the range of thermal comfort conditions, with 59% related to cold stresses (PET 23C°). Extremely severe cold stresses in January, February and December from 6 pm to 6 am and severe to moderate heat stress from late May to late September between 9 am and 3 pm.

کلیدواژه‌ها [English]

  • PET index
  • Heat and cold stress
  • District 9 of Tehran
  1.  

    1. Akbarian, R., SR. Roshan and S. Negahban, 2016, Assessment of tourism climate opportunities and threats for villages located in the northern coasts of Iran. International Journal of Environmental Research . No.10, pp.601-612.
    2. Ataei, H., Cheraghi, S., Hasheminasab, S., 2013, Determination of suitable calendar for Tourism in Ahwaz utilizing Physiological Equivalent Temperature, Bulletin of Enviroment, pharmacologh and sciences,Vol 2, pp 104-109.
    3. Barghadi, A., 1389, Investigation of Biomedical Evaluation Index in sabzevar, Master of Science Degree in Geography.
    4. Bauche,­ JP., E. Grigorieva and A. Matzarakis, 2013,  Human-Biometeorological Assessment of Urban Structures in Extreme Climate Conditions, HindawiPublishingCorporation AdvancesinMeteorology, pp. 1-10.
    5. Blazejczyk, K., Y. Epstein, G. Jendritzky, H. Staiger, and B. Tinz, 2012, Comparison of UTCI to selected thermal indices, International Journal of Biometeorology. No. 56, pp. 515-535.
    6. Coccolo, S., K. Jerome, J.H. Scartezzini, D. Pearlmutter, 2016, Outdoor human comfort and thermal stress:A comprehensive review on models and standards, Urban Climate. No. 18, pp.33-57.
    7. Dolatkhah,  M, 1390, Investigation of Biomedical Evaluation Index in Kashmar, Master of Science Degree in Geography.
    8. Epstein, Y., and D.S. Moran, 2006, Thermal comfort and the heat stress indices, Journal of Industrial Health. Vol. 44, No. 3, pp. 388–398.
    9. Fanger, PO, 1972, Thermal Comfort. Analysis and Applications in Environmental Engineering. New York.
    10. Ghany, AM.,  IM. Al-Helal and M.R.Shad, 2013, Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment. Journal of Advances in Meteorology, Vol. 2016. pp. 1-7.
    11. Gulyas, A and A. Matzarakis, 2009, Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary, Journal of the Hungarian Meteorological Service, Vol. 113, No. 3, pp. 221–231.
    12. Ghani, S., E.M. Bialy, F. Bakochristou, S. Gamaledin, M. Rashwan and B.Hughes, 2017, Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment. Science and Technology for the Built Environment. No. 23, pp. 1113–1131.
    13. Gomeza, F., A. Perez Cuevab, M. Valcuendec, A. Matzarakisda, 2013, Research on ecological design to enhance comfort in open spaces of acity (Valencia, Spain). Utility of the physiological equivalenttemperature (PET), Journal of Engineering, NO.52, pp. 27-39.
    14. Hoppe, P, 1993, Heat balance modelling. Experientia, No. 49, pp.741-745. 
    15. Hoppe,­ P., 1999, The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology. No. 43, pp. 71-75.
    16. Hoppe, P., H. Mayer, 1987, Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft Stadt, NO.19, pp. 22‐29.
    17. Herrmann, H and A. Matzarakis ,2012, Mean radiant temperature in idealised urban canyons:examples from Freiburg, Germany, International Journal of Biometeorology, No. 56, pp.199-203.
    18. Honjo, T., 2009, Thermal Comfort in Outdoor Environment, Journal of Global Environmental Research, NO. 13, pp. 43-47.
    19. Jendritzky, G., H. Menz, H. Schirmer, W. Schmidt-Kessen, 1990, Methodik zur raumbezogene Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes KlimaMichel-Modell). Beitrage Akad Raumforschung Landesplanung Hannover. No. 114, pp.7-69.
    20. Lindqvist, S., S. Thorsson and M. Lindqvist, 2004, Thermal bioclimatic conditions and patterns of behaviour in an urban park in Goteborg. International Journal of Biometeorology. Vol. 48, No. 3, pp. 149–156.
    21. Lin, TP and A. Matzarakis, 2011, Tourism climate information based on human thermal perception in Taiwan and Eastern China, Journal of  Tourism Management, NO. 32, pp. 492-500.
    22. Matzarakis, A, 2001, Climate and bioclimate information for tourism in Greece
    23. Matzarakis, A., and B. Amelung, 2008, Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans, Seasonal Forecasts, Seasonal Forecasts, Climatic Change and Human Health, pp.161-172.
    24. Muthers, S., A. Matzarakis  and E. Koch, 2010, Climate Change and Mortality in Vienna a human biometeorological analysis based on regional climate modeling, International Journal of Environmental Research . No. 7, pp. 2965-2977.
    25. Matzarakis, A, 2001, Die thermische komponente des stadtklimas. berichte des meteorological institutes, Nr. 6.
    26. Matzarakis, A., H. Mayer, M. Iziomon, 1999, Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology. No. 43, pp. 76-84.
    27. National Institute for Occupational Safety and Health(Niosh),1986. Criteria for a recommended standard: occupational exposure to hot environment, National Institute for Occupational Safety and Health, Washington No. 86, pp.101–110.
    28. Parsons, K, 2014, Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance, London.
    29. Robert, E., D. Knight, D, 2006, a comparison of biometeorological comfort indices and human  mortality during heat waves in the united states, 17th Conference on Biometeorology and Aerobiology.
    30. Rainham, D., K. Smoyer-Tomic, 2003, The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Journal of Environmental Sciences, No. 93, pp. 9-19.
    31. Rubistein, M., E. Ganor., G. Ohring, 1980, Areal distribution of the discomfort index in Israel. International Journal of Biometeorology. No. 24, pp.315-322.

    Spagnolo, J., and R. Dear, 2003, A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. The International Journal of  Building and Environment. NO. 38, pp.721-738.

    1. Stathopoulos, T., H. Wu and Z. Zacharias, 2004. Outdoor human comfort in an urban climate. The International Journal of  Building and Environment. No. 39 , pp. 297–305.
    2. VDI, 1998, Methods for the human-biometeorological assessment of climate and air hygiene for urban and regional planning. Part I: Climate. VDI Guidline 3787. Beuth, Berlin.
    3. Zolfaghari, H., 1390. Setting the appropriate time calendar for Tabriz using PET and PMV indexs. Geographic Research Journal. 62, 129-141.
    4. Zaninovic, K, 2008, The Climate Atlas of Croatia 1961–1990, DHMZ, Zagreb, p 130.