بررسی تأثیر روش‌های مختلف ریزمقیاس‌‌سازی آماری بر تغییرات جریان پیش‌بینی‌شده بر اثر تغییراقلیم در حوضه‌ی سد کرج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی عمران-آب، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی

2 دانشیار، پژوهشکده هواشناسی، تهران

3 دانشیار، دانشکده عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی

چکیده

اطلاعات مدل‌های اقلیمی اغلب در مقیاس بزرگ (>100 کیلومتر) ارائه می‌گردند و برای استفاده از آن‌ها احتیاج به ریزمقیاس­سازی است. این پژوهش عدم قطعیت ناشی از چهار روش مختلف ریزمقیاس سازی آماری را بررسی و نتایج را در سناریوهای مختلف اقلیمی ارائه کرده­است. به همین منظور نتایج مدل CSIRO MK3.6 در چهار سناریو تابشی 6/2، 5/4، 0/6 و 5/8 در نظر گرفته‌شده است. جریان ورودی در دوره-ی آینده (2013-2045) محاسبه و با اطلاعات تاریخی و داده‌های شبیه‌سازی‌شده مدل در دوره­ی پایه (1985-2012) مقایسه شده است. هیدروگراف متوسط ماهانه جریان و تابع توزیع احتمالاتی جریان، دما و بارش رسم و مقایسه شده است. روند کلی دما در آینده افزایشی است اما بارش روند منظمی ندارد و در برخی از مدل سناریوها کاهشی و در بعضی دیگر افزایشی است. این مطالعه نشان­داد که برای دسترسی به طیف کامل‌تری از آینده‌های محتمل علاوه بر سناریوهای اقلیمی مختلف، روش‌های گوناگون ریزمقیاس­سازی نیز باید در نظرگرفته شوند. نتایج حاکی از آن است که میزان تغییرات جواب در روش­های ریزمقیاس سازی با اصلاح اریبی و عامل تغییر با یکدیگر دارای تفاوت معنی­دار است و انتخاب نوع روش (بر پایه میانگین یا بر پایه واریانس) تاثیر کمتری نسبت به روش­های ذکر شده­دارد. همچنین این مطالعه پیش­بینی می­کند که در آینده میزان جریان در ماه آوریل کاهش‌یافته و روند کلی جریان از یک پیک در ماه آوریل به دو پیک متوالی در ماه‌های آوریل و مه می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing effect of different statistical downscaling methods on the predicted streamflow in Karaj dam basin under climate change effect

نویسندگان [English]

  • Vahid Kimiagar 1
  • Ebrahim Fattahi 2
  • saeeid alimohammadi 3
1 Ph.D. candidate, Civil, water and environmental engineering faculty, Shahid Beheshti University, Tehran, Iran
2 Associate professor, Atmospheric Science & Meteorological Research Center, Tehran, Iran
3 Associate professor, Civil, water and environmental engineering faculty, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction 
Climate model information usually is in large scales (> 100 km). It is often necessary to use downscaling methods to use this information. Downscaling can be defined as methods which interpret climate information in regional or local scale (10-100 km) from the large grid (>100km) GCMs (Fung et al. 2011). Two main methods of downscaling are dynamical and statistical downscaling. Statistical downscaling methods are less compute-intensive tasks which involve implementing local scale variables as a function of global climate model outputs (Chen et al. 2013). This paper predicts inflow into the Karaj dam reservoir using results of a Global climate model in different climate scenarios and downscaling methods (a total of 32 different runs).
Material and methods
Climate model and scenarios
Intergovernmental Panel on Climate Change (IPCC) introduced four different greenhouse gas concentration (not emissions) trajectories (representative concentration pathways RCP) based on the amount of radiative forcing values at the end of the year 2100 namely RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 which all have been used in this study alongside CSIRO MK 3.6.0 Global Climate model (GCM).
Statistical downscaling methods
Based on choosing the predictors, observed data or historical GCMs simulation,  downscaling methods (DSM) can be divided into two major groups namely Bias Correction (BC) and Change Factor (CF) (Ho, Stephenson et al. 2012, Wang, Ranasinghe et al. 2016). In BC based methods, it is assumed that the change between GCM data and observed data remain constant in time and the CF-based method, it is presumed that change in observed climate variable is same as changes in climate model data, and precipitation occurrence probability will remain constant. For a better estimation of future climate conditions and understand the effect of selecting different downscaling methods two different BC methods and two different CF methods have been explained and used in the study.
Karaj dam watershed is located in the central part of Northern Iran in Tehran province between 51.05 and 51.60 degrees North and 35.88 and 36.18 East. It is one of the main supplies of urban and agricultural water demand of Tehran. The area of the watershed is about 846.5 km2 and its average height is about 2826 MASL. Twelve (12) weather stations which had data with proper length were selected over the region. Spatial downscaling was used by averaging 4 grid points near the station. The inflow was predicted for a future period (2013-2045) and compared with both observed and modeled data in the base period (1985-2012). Future temperature and precipitation in different DSM-RCPs have been plotted. Average monthly hydrograph and probability density functions of annual streamflow were compared. Runoff-precipitation simulation has been conducted using IHACRES software.
Results
The overall trend of temperature in different downscaling methods is rising and the uncertainty related to choosing DSM is more than choosing climate scenario. The range of changing temperature is wider in the CF method and choosing the overall DSM method (BC or CF) is more important than choosing sub-method (MB or VB). Unlike temperature precipitation changes in not similar in different scenarios and DSMs. Although in some scenarios precipitation increases, in others decreases. Despite small differences, it seems that the overall trend of streamflow in the CSIRO model is decreasing. Streamflow in April decreased significantly. The range of streamflow in the future is wider than historical observation and uncertainty especially in extreme events is higher. RCP 8.5 has the greatest streamflow range in the future which shows less reliability in predictions.
Discussions
For better performance of infrastructures in the future, climate changes and their effect on streamflow should be predicted. This paper investigated the effect of choosing different statistical downscaling methods and climate scenarios (RCP) on the future streamflow in the Karaj dam basin, Tehran, Iran.
There are changes in flow pattern and in most scenarios, two peaks in April and May are recorded.
Least annual average flow is for RCP 6.0 and the greatest annual average flow is for RCP 2.8. The study showed that for better understanding and prediction of future condition, different downscaling methods should be considered as well as different climate scenarios. Choosing whether the BC or CF method has more effect than MB or VB selection. The paper used different scenarios and methods to predict future streamflow. Probabilistic approach showed the importance of considering uncertainty in streamflow prediction and the possible range of future changes which may be used in defining the reservoir operating rule.
 

کلیدواژه‌ها [English]

  • bias correction
  • Change Factor
  • streamflow prediction
  • Uncertainty analysis
  1.  

    1. Ashofteh, P. S., O. B. Haddad and M. A. Mariño (2012). "Climate change impact on reservoir performance indexes in agricultural water supply." Journal of Irrigation and Drainage Engineering 139(2): 85-97.
    2. Badjana, H. M., M. Fink, J. Helmschrot, B. Diekkrüger, S. Kralisch, A. A. Afouda and K. Wala (2017). "Hydrological system analysis and modelling of the Kara River basin (West Africa) using a lumped metric conceptual model." Hydrological Sciences Journal 62(7): 1094-1113.
    3. Chen, J., F. P. Brissette, D. Chaumont and M. Braun (2013). "Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins." Journal of Hydrology 479: 200-214.
    4. Chiew, F. H. S., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono and N. R. Viney (2009). "Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method." Water Resources Research 45(10): n/a-n/a.
    5. Croke, B., F. Andrews, J. Spate and S. Cuddy (2005). IHACRES user guide, Technical Report 2005/19. Second Edition. iCAM, School of Resources, Environment and Society, The Australian National University, Canberra. http://www. toolkit. net. au/ihacres.
    6. Durman, C., J. M. Gregory, D. C. Hassell, R. Jones and J. Murphy (2001). "A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates." Quarterly Journal of the Royal Meteorological Society 127(573): 1005-1015.
    7. Fung, F., A. Lopez and M. New (2011). Modelling the impact of climate change on water resources, Wiley Online Library.
    8. Ghorbani, K., E. Sohrabian, M. Salarijazi and M. ABDOLHOSSEINI (2016). "Prediction of climate change impact on monthly river discharge trend using IHACRES hydrological model (Case study: Galikesh watershed)."
    9. Gudmundsson, L., J. Bremnes, J. Haugen and T. Engen-Skaugen (2012). "Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods." Hydrology and Earth System Sciences 16(9): 3383-3390.
    10. Hawkins, E., T. M. Osborne, C. K. Ho and A. J. Challinor (2013). "Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe." Agricultural and Forest Meteorology 170: 19-31.
    11. Ho, C. K., D. B. Stephenson, M. Collins, C. A. Ferro and S. J. Brown (2012). "Calibration strategies: a source of additional uncertainty in climate change projections." Bulletin of the American Meteorological Society 93(1): 21.
    12. Jeffrey, S., L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong and J. Syktus (2013). "Australia’s CMIP5 submission using the CSIRO Mk3. 6 model." Aust. Meteor. Oceanogr. J 63: 1-13.
    13. Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. Mitchell, C. A. Senior, S. F. Tett and R. A. Wood (1997). "The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation." Climate dynamics 13(2): 103-134.
    14. Lalozaee, A., A. Pahlavanravi, F. Bahreini, H. Ebrahimi and H. Iezadi (2013). "EFFICIENCY COMPARISON OF IHACRES MODEL AND ARTIFICIAL NEURAL NETWORKS (ANN) IN RAINFALL-RUNOFF PROCESS SIMULATION INKAMEHWATERSHED (A CASE STUDY INKHORASAN PROVINCE, NE IRAN)." International Journal of Agriculture 3(4): 900.
    15. Lenderink, G., A. Buishand and W. v. Deursen (2007). "Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach." Hydrology and Earth System Sciences 11(3): 1145-1159.
    16. Maurer, E. P. and H. G. Hidalgo (2008). "Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods."
    17. Shabalova, M., W. Van Deursen and T. Buishand (2003). "Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model." Climate Research 23(3): 233-246.
    18. Tabor, K. and J. W. Williams (2010). "Globally downscaled climate projections for assessing the conservation impacts of climate change." Ecological Applications 20(2): 554-565.
    19. Vrac, M. and P. Vaittinada Ayar (2017). "Influence of Bias Correcting Predictors on Statistical Downscaling Models." Journal of Applied Meteorology and Climatology 56(1): 5-26.
    20. Wang, L., R. Ranasinghe, S. Maskey, P. van Gelder and J. Vrijling (2016). "Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: a case study of the Huai River Basin, China." International journal of climatology 36(1): 145-164.
    21. Wilby, R. L. and T. Wigley (1997). "Downscaling general circulation model output: a review of methods and limitations." Progress in Physical Geography 21(4): 530-548.