تحلیل روند نقطه‌ای و منطقه‌ای بارش در استان فارس در دوره 1369 تا 1399

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه پژوهشی پیش‌آگاهی و مدل‌سازی اقلیمی، پژوهشکده اقلیم شناسی و تغییر اقلیم، پژوهشگاه هواشناسی و علوم جو، مشهد، ایران

چکیده

مطالعه روند تغییرات بارش برای برنامه‌ریزی‌های کوتاه مدت و بلند مدت مدیریتی اهمیت فراوانی دارد. اهمیت این مطالعه زمانی بیشتر می‌شود که در منطقه‌ای خشک و نیمه خشک مانند فارس با محدودیت زمانی و مکانی بارش روبرو باشیم. فلذا در مطالعه حاضر به بررسی روند بارش از 1369 تا 1399 در 27 ایستگاه باران سنجی، سینوپتیک و تبخیر سنجی در سطح استان فارس پرداخته شد. مطالعه روند تغییرات بارش در مقیاس‌های زمانی سالانه و فصلی و مکانی نقطه‌‌‌‌ای و منطقه‌ای صورت پذیرفت. از روش‌های من-کندال، تخمین گر شیب سن و تحلیل رگرسیون خطی برای تحلیل نقطه‌ای و از روش من-کندال منطقه‌ای برای تحلیل منطقه‌ای روند استفاده گردید. بارش سالانه در تمام ایستگاه‌ها و دوره زمانی مورد مطالعه شیب کاهشی داشت. ولی ارسنجان (5.9 میلیمتر در سال)، برغان (11.4 میلیمتر در سال)، تنگاب فیروزآباد (7.9 میلیمتر در سال) و فراشبند (5.1 میلیمتر در سال) تنها نقاط دارای روند معنادار کاهشی بارش در سطح اطمینان 95% بودند. درمقیاس فصلی، تقریباً دراکثر فصول و اکثر ایستگاه‌ها شاهد کاهش بارش هستیم. به جز فصل تابستان که در اکثر ایستگاه‌ها یک افزایش بارش خفیف مشاهده می‌شود. از میان این ایستگاه‌ها، ارسنجان (4.73 میلیمتر کاهش در سال)، برغان (14.5 میلیمتر در سال)، شیراز (4.6 میلیمتر در سال)، فراشبند (4.3 میلیمتردر سال)، کازرون (6.7 میلیمتر در سال)، مادرسلیمان (4.1 میلیمتر در سال( و زرقان (4.4 میلیمتر در سال) شاهد روند کاهشی معنادار در سطح اطمینان 95% در فصل زمستان بودند. درسطح منطقه‌ای و در مقیاس سالانه و فصلی کل استان شاهد کاهش بارش به خصوص در فصل زمستان و بارش سالانه بوده است. این میزان کاهش بارش در شمال غرب استان کمی ضعیف‌تر از سایر نقاط استان است. افزایش بارش معنادار در فصل تابستان در قسمت جنوبی قابل مشاهده است. این امر ممکن است به دلیل فعالیت مانسون هند باشد. در فصل زمستان کاهش بارش مشاهده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of point and regional trend of precipitation in Fars province in the period from 1990 to 2021

نویسنده [English]

  • yashar falamarzi
چکیده [English]

Changes in hydrological-climatic series can occur in different ways. Change can occur suddenly or gradually (trend) or in more complex forms. In general, trend analysis is performed to obtain information and study whether a trend or a pattern can be extracted from this information. Information about precipitation trends is important, because precipitation trends are related to water-related problems in the region, environmental and water management goals. This information will be the most valuable when studying climate change and its effects on water resources management. Determining the precipitation trend has been one of the most important activities of hydrologists and meteorologists in advancing climate change studies. In addition, the study of climate change requires information on the trend of various indicators (hydrological and climatic) because climate change is a continuous change. Almost all water and meteorological parameters are affected by climate change phenomenon. Precipitation is one of these variables that strongly affects the environment and the hydrological cycle. The temporal changes of precipitation are important both from scientific and practical point of views, since they strongly affect water resources. Therefore, studying the process of these changes is very important for short-term and long-term management planning. The importance of this study increases when we face time and place limitations of rainfall in an arid and semi-arid region like Iran and especially in Fars province. Therefore, in the present study, the 30-year trend of precipitation was investigated in 27 rain, synoptic and evapotranspiration stations in Fars province. The study of rainfall changes was done at annual and seasonal and at both stational and regional scales. At the first step, monthly precipitation data was gathered from meteorological organization and water resources management company. Then monthly data was converted to seasonal and annual data sets. Mann-Kendall methods, age slope estimator and linear regression analysis were used to conduct at point analysis. In order to study the rainfall trends at regional scale, first, the study area was clustered based on mean seasonal and annual precipitation using the K-mean clustering method. It is worth mentioning that for each season and annual, separate homogenous regions were formed. Then regional Mann-Kendall method was utilized to investigate the trends in each homogenous region. On an annual scale, a decreasing trend of precipitation was observed at all stations. But Arsanjan, Berghan, Tangab Firozabad and Farashband stations are the only points whose rainfall trends are significant at the 95% confidence level. On a seasonal scale, a decreasing trend of precipitation was observed in almost most seasons and most of the stations. Except for the summer season, when we see a very slight increase in the majority of the stations. In spring and summer, respectively, 48% and 67% of the stations witness a decrease in precipitation, but these trends are not significant. In the autumn season, 74% of the stations experienced a negative trend of precipitation, and among these stations, Arsanjan, Berghan, Shiraz, Farashband, Kazeroon, Madersaliman and Zarghan witnessed a significant decreasing trend at the 95% confidence level. At the regional level, on annual and seasonal scales, the entire province has seen a decrease in rainfall, especially in winter and annual rainfall. This decrease in rainfall in the northwest of the province is a little weaker than other parts of the province. In the spring season, decreasing changes were observed, but these changes are not significant. In the summer season, a significant increase was seen in rainfall in the southern part of the province. This may be due to the increased activity of the Indian Monsoon. In the autumn season, a decreasing trend in the whole province was experienced, which is not significant. Similarly, the winter season also a decrease in precipitation was observed, with the difference that this trend is significant at the 95% confidence level. In general, all point and regional analyzes show a decrease in precipitation, especially in the annual and winter scales. On the other hand, there are signs of an increase in rainfall in the summer season. Considering that most of the province's annual rainfall occurs in the winter season, the decrease in rainfall in this season can have irreparable negative effects, which of course it has done so far. Therefore, it is expected that more attention must be paid to the planning of the water management and agriculture. In addition, due to the signs of increased rainfall in the spring and summer seasons, there should be sufficient attention to the problem of flooding in these seasons and the resulted damages, and in general, the comprehensive management of water resources in these changing conditions should be seriously considered so that the minimum losses and maximum benefits could be obtained.

کلیدواژه‌ها [English]

  • Trend analysis
  • Precipitation
  • Man-Kendall
  • Sen&rsquo؛ s slope estimator
  • linear regression
  1. Adamowski, K. and Bougadis, J. 2003. Detection of trends in annual extreme rainfall. Hydrological Processes 17: 3547–3560.
  2. Ahani, H., Kherad, M., Kousari, M.R., Rezaeian-Zadeh, M., Karampour, M.A., Ejraee, F. and Kamali, S. 2012. An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theoretical and Applied Climatology 109: 361–382.
  3. Azirani, T., A., Ghorbani, H., Gholipour, J., 2022 , Trend Analysis and Detection of Seasonal Changes in climatic variables Temperature and Precipitation in the Mountainous part of Gharaghom Basin., Journal of Geographical Studies of Mountainous Areas., 9: 41-54. (In Persian)
  4. Basistha, A., Arya, D. and Goel, N. 2009. Analysis of historical changes in rainfall in the Indian Himalayas. International Journal of Climatology 29: 555–572.
  5. Birsan, M.V., Molnar, P., Burlando, P. and Pfaundler, M. 2005. Stream flow trends in Switzerland. Journal of Hydrology 314: 312–329.
  6. Caloiero, T., Coscarelli, R., Ferrari, E. and Mancini, M. 2011. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). International Journal of Climatology 31: 44–56.
  7. Chen, Z. 2010. A note on the runs test. Model Assisted Statistics and Applications, 5(2), 73-77.‏
  8. Cunderlik, J. M., & Burn, D. H. 2004. Linkages between regional trends in monthly maximum flows and selected climatic variables. Journal of Hydrologic Engineering, 9(4), 246-256.‏
  9. Douglas, E., Vogel, R., Kroll, C., 2000. Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology 240: 90–105.
  10. Firoozi, F., Negaresh, K., Khosravi, M., 2002. Modeling, forecasting and investigation of rainfall in selected stations of Fars province. Regional Planning. Journal of regional planning., 2(7): 77-91. (In Persian)
  11. Gholamhosseini, A., Baharlu, F., 2021., Assessment of climate change impacts on geographic distribution of Merops orientalis in southern Iran: a case study in Fars province. Journal of Animal Research (Iranian Journal of Biology)., 34(2): 98-109. (In Persian)
  12. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196.‏
  13. Helsel, D.R. and Hirsch, R.M. 1992. Statistical methods in water resources. Elsevier, Amsterdam.
  14. Hirsch, R. M., Slack, J. R., & Smith, R. A. 1982. Techniques of trend analysis for monthly water quality data. Water resources research, 18(1), 107-121.‏
  15. Jahandideh, M., Shiravani, A., 2002, Trend analysis for the time series of precipitation in Fars province., Water Resources Engineering Journal., 5(12): 75-86. (In Persian)
  16. Kardi, T. 2007. K-Means clustering tutorials. http://people.revoledu.com/kardi/tutorial/kMean/.
  17. Kendall, M.G. 1975. Rank correlation methods: Charles Griffin. Oxford, London, UK.
  18. Longobardi, A. and Villani, P. 2009. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International journal of Climatology 30: 1538–1546.
  19. Mann, H.B. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 245–259.
  20. Moh’d B, A.Z. and al Rawi, M. 2008. An efficient approach for computing silhouette coefficients. Journal of Computer Science 4: 252.
  21. Novotny, E. V. and Stefan, H.G. 2007. Stream flow in Minnesota: Indicator of climate change. Journal of Hydrology 334: 319–333.
  22. Omidvar, K., Salari, H., 2003., Studying the trend of heat and precipitation changes in the west and northwest of Iran using parametric and non-parametric methods., Geography., 18: 271-288. (In Persian)
  23. Rana, A., Uvo, C.B., Bengtsson, L. and Parth Sarthi, P. 2011. Trend analysis for rainfall in Delhi and Mumbai, India. Climate dynamics 38: 45–56.
  24. Razali, N. M., & Wah, Y. B. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21-33.‏
  25. Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., Sauquet, E., Prudhomme, C., Parey, S., Paquet, E., Neppel, L. and Gailhard, J. 2008. Regional methods for trend detection: Assessing field significance and regional consistency. Water Resources Research 44: W08419.
  26. Sadri, S., Madsen, H., Mikkelsen, P.S. and Burn, D.H. 2009. Analysis of extreme rainfall trends in Denmark, in: proceedings of the 33rd iahr congress: water engineering for a sustainable environment. International association of hydraulic engineering & research (IAHR), Vancouver, Canada, 9-14 August .1731–1738.
  27. Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63: 1379–1389.
  28. Serrano, A., Mateos, V.L. and Garcia, J.A. 1999. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B Hydrology, Oceans and Atmosphere 24: 85–90.
  29. Shirgholami, M., Masoodian, S.A., 2023., Analysis of Spatiotemporal Variations and Trends of Precipitation in Yazd Province by Asfezari Database During 1349 to 1394., Journal of Natural Environmental Hazards., 12(35): 95-114. (In Persian)
  30. Tabari, H. and Talaee, P.H. 2011. Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology 396: 313–320.
  31. Tabari, H., & Marofi, S. 2011. Changes of pan evaporation in the west of Iran. Water Resources Management, 25(1), 97-111.‏
  32. Tavose, T., Rakhshani, Z., Firouzi, F., 2014., Trend Analysis of the Changes in Seasonal and Annual Maximum and Minimum Temperatures in Fars province by the Use of Nonparametric Methods. Nivar, 38(87-86): 29-38. (In Persian)
  33. Yue, S. and Hashino, M. 2003. Long term trends of annual and monthly precipitation in Japan1. JAWRA Journal of the American Water Resources Association 39: 587–596.
  34. Yue, S. and Wang, C.Y. 2002. Regional streamflow trend detection with consideration of both temporal and spatial correlation. International Journal of Climatology 22: 933–946.
  35. Zhang, X., Vincent, L. a., Hogg, W.D. and Niitsoo, A. 2000. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 38: 395–429.
  36. Zohrabi, N., Massah, B.A., Goodarzi, E., Heidarnejad, M. 2016. Identify Trend in the Annual Temperature and Precipitation in Karkheh River Basin. Wetland Ecobiology., 8 (2) :5-22. (In Persian)