کاربرد و ارزیابی مدل درجه- روز برای پیش‌بینی بهترین زمان کنترل و سم‌پاشی کرم سیب (Cydia pomonella). مطالعه موردی: چناران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشکده کشاورزی دانشگاه فردوسی مشهد

2 استاد گروه آب، دانشگاه فردوسی مشهد

3 استاد، گروه گیاه‌پزشکی دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

یکی از کاربردهای هواشناسی ارتباط آن با جامعه گیاهی و آفات در علم کشاورزی  است. فنولوژی کرم سیب به‌عنوان یکی از مهم‌ترین آفات درختان دانه‌دار که هرساله خسارت‌های بسیاری به باغداران وارد می‌کند، وابستگی زیادی به دمای محیط دارد. این تحقیق باهدف استفاده از متغیر دما و ارائه یک مدل درجه- روز برای تعیین بهترین و مؤثرترین زمان سم‌پاشی جهت حداکثر صدمه به لاروهای کرم سیب و درنتیجه کاهش خسارت، افزایش سلامت میوه و حفظ محیط‌زیست اجرا شده است. بدین منظور تله‌های فرمونی از نوع دلتا به همراه دیتالاگر دما در باغ گلابی به مساحت 6 هکتار واقع در روستای صفی‌آباد چناران و در سه تیمار (الف: بدون سم‌پاشی، ب: سم‌پاشی در تاریخ‌های پیشنهادی مدل و ج: سم‌پاشی اختیاری و تجربی توسط کشاورز) در سال 1398 نصب گردیدند. اولین شکار پروانه نر در تله‌ها به‌عنوان تاریخ بیوفیکس و شروع محاسبات درجه-روز در نظر گرفته شد. با شمارش تعداد پروانه‌های به دام افتاده در طول زمان، داده‌های دیتالاگر و نمونه‌برداری از تعداد تخم‌های تفریخ شده، دستورهای سم‌پاشی در تاریخی که بیشترین آسیب به آفت وارد می‌شود ابلاغ و در تیمار مربوطه اجرایی گردید. نتایج نشان‌دهنده سه نسل کامل و یک نسل ناقص کرم سیب در چناران می‌باشد و مدل درجه-روز و داده‌های تله‌ها 5 مورد سم‌پاشی را پیشنهاد کرده است. درصد تأثیر تیمار سم‌پاشی شده در تاریخ‌های پیشنهادی نسبت به تیمار بدون سم‌پاشی 5/78 درصد بود. باوجوداینکه تیمار تجربی کشاورز 2 مرحله بیشتر سم‌پاشی داشته است، درصد تأثیر این تیمار نسبت به تیمار بدون سم‌پاشی 7/49 درصد است. بنابراین سم‌پاشی طبق مدل علاوه بر کاهش تعداد سم‌پاشی‌ها و هزینه‌های کشاورز و خسارت به محیط‌زیست باعث افزایش کارایی و کاهش خسارت برای باغداران نیز خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Application and Evaluation of Degree-Day Model for Prediction of the Best Time for Control and Spraying codling moth (Cydia pomonella). Case Study: Chenaranِ

نویسندگان [English]

  • mahdi Helmi jadid 1
  • Mohammad Mousavi bayegi 2
  • , Hussein Sadeghi Namaghi 3
1 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Department of Plant protection, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Professor, Department of Plant protection, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

The Codling moth Cydia pomonella (L.) (Lepidoptera Tortricidae) is a pest of worldwide importance that exhibits seasonal phenology that is mainly affected by temperature. This pest is the most important pest in Iranian apple orchards. In order to avoid the unnecessary usage of chemical pesticides, using pheromone traps and degree- day Model is the most effective control way. The pest phenological stages and the best time of spraying can be predicted with the degree- day model and Pheromone Traps. The purpose of this study is determine the best time of spraying Codling moth to Reduce Damage and Environmental Protection.
Materials and Methods: The pheromone traps and temperature Data Logger were planted in a orchard To determine the best time of spraying Codling moth in Chenaran. sex pheromone traps were planted in the garden and The number of trapped males was recorded every five days. The history of the first males trapped in pheromone traps was considered biofix. Degree-days were calculated and recorded using mean daily temperature and base temperature. temperature datalogger was installed to record the temperature in the orchard. To calculate the base temperature, number of Codling moth eggs kept at different temperatures. The growth rate was calculated at this stage of pest life After determining the number of days needed for egg hatching. The temperature at which the growth rate becomes zero was considered as the base temperature. after Flying Peaks, Thirty Codling moth eggs were sampled and The spraying was done when fifteen eggs were hatched. There were three experimental treatments in the orchard. A: The first treatment was spraying on the proposed degree- day model and pheromone traps. B: The second treatment was spraying according to the farmer's opinion. C: Third treatment The spraying was not done. The degree- day model was evaluated using the percentage of impact method. In this method the percentage of healthy fruits of treatment A was compared with treatment C and the percentage of healthy fruits of treatment B was compared with treatment C.
Results and Discussion: The basal temperature of codling moth was 8.4 ° C. The first males trapped on 25 April 2019 and it was Biofix. Pheromone Traps data showed three flight peaks. This means that there are three generations of Codling moth in the Study Area. In the Last year, Codling moth lay many eggs in different places. These eggs hatch in the New Year at different times. So the population of the first generation of Codling moth was so many. for the first generation, two spraying stages were performed. The first was done at 168 ° C degree- day and second at 343° C degree- day. Spraying was performed for the second generation at 804 degree- day. Spraying was performed for the Third generation at 1505 ° C degree- day. The fourth generation of this pest was incomplete and Spraying was performed for the fourth generation at 2148 ° C degree- day. These spraying were done in treatment A. The results show the best time to counter the pest is in the first generation, 4 to 6 days after flight peak, the second generations 4 to 6 days after flight peak, the third generations 3 to 5 days after flight peak and the Fourth generations 6 to 8 days after flight peak. In treatment B: The farmer sprayed seven times. The spraying dates were selected experimentally. The percentage of effect in treatment A was 78.5% compared to treatment C and The percentage of effect in treatment B was 49.7% compared to treatment C. the number of sprayers decreased in treatment A compared to treatment B and Treatment A was more effective than treatment B.
Conclusions: Spraying at the best time in addition to reducing the number of spraying, It also reduces damage to the fruit. The Pheromone Traps and degree-Day Model in this study is expected to be useful for field applications in integrated pest management (IPM) systems, for example, to forecast optimal spray times for available insecticides and application of other control measures. By reducing the use of chemical pesticides Useful enemies will do less damage and the environment will be preserved. In order to avoid the unnecessary usage of chemical pesticides, using pheromone traps and degree- day model are the most effective control way.

کلیدواژه‌ها [English]

  • Degree-day
  • Codling moth
  • Biofix
  1.  

    1. Ahmad, T. R., M. A. Ali, and B. Sh Hamad. "Using degree‐days model to determine the optimum spray timing for the codling moth Cydia pomonella (L.)(Lep., Olethreutidae)." Journal of Applied Entomology 119.1‐5 (1995): 143-144.
    2. Alston, D. 2006. Codling moth (Cydia pomonella). Utah pest’s fact sheet, Utah State University, Ent-13-06, Available on: www.utah pests.usu.edu. (Accessed November 30, 2006).
    3. Alston, D., Murray, M. and Reding, M. 2010. Codling moth (Cydia pomonella). Utah state University Extension and Utah Plant pest Diagnostic Laboratory. 13: 1-7.
    4. Amiri, R., Shojaaddini, M., Motazedian, N. and Zibayee, K. 2014. Degree-day and pheromone traps in control timing of codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae). Agricultural pest management 1(2): 34-40.
    5. Asadi, Gh., Alichi, M., Zebayi, K. and Mosalaei, K. 2001. Use Degree-Days to determined time for chemical control for Cydia pomonella in Sepidan. Journal of Agricultural Sciences and Natural Resources, 98 pp.
    6. Asadi, Gh., Gholami, M. R. and Lakzyan, A. 2009. Study of seasonal population of Cydia pomonella and best time for chemical control in Shirvan. Journal of Agricultural Sciences and Natural Resources, 3: 71-78.
    7. Barros-Parada, W., Knight, A. L., and Fuentes-Contreras, E. (2015). Modeling codling moth (Lepidoptera: Tortricidae) phenology and predicting egg hatch in apple orchards of the Maule Region, Chile. Chilean journal of agricultural research, 75(1), 57-62.
    8. Barens, B. N. O. 1991.Banded fruit weevil in decidiuous fruit orchards of the SouthWestern, Cape; historical review and background. Stellenbosch: NavorsingsinstituutevirVrugte en Vrugtetgnologie, Fruit and fruit technology research institute, 3pp.‌
    9. Blomefield, T. L., and Giliomee, J. H. (2009). Development rates of the embryonic and immature stages of codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), at constant and fluctuating temperatures. African Entomology, 17(2), 183-191.
    10. Bush, M. R., Yai, A. A. and Rock, G. C. 1993. Parathion resistance and esterase activity in Codling moth Cydia pomonella (Lepidoptera: Tortricidae) from North Carolina. Journal of Economic Entomology, 86: 660-666.
    11. Charmillot, P. J., Pasquier, D., Scalco, A. and Hofer, D. 1996. Studies on the Control of the Codling moth Cydia pomonella L. using attractant insecticide. Mitteilungen der Schweizerische Entomologischen Gesellschaft, 69: 431-439.
    12. Charmillot, P. J., Pasquier, D. and Hofer, D. 2002. Control of codling Moth Cydia pomonella by Autosterilisation. IOBC WPRS Bulletin, 25(9): 117-120.
    13. Cravedi P., Jorge E., 1995.- Special challenges for IFP in stone and soft fruit. International conference on integrated fruit production.- Bulletin OILB/srop, 19: 48-56.
    14. Cross J. V., Berrie A. M., 2001.- Integrated pest and disease management in apple production, pp. 2.1-2.94. In: The best practice guide for UK apple production.- Department for Environment, Food and Rural Affairs (Defra), Horticulture Research International, Farm Advisory Services Team Ltd, ADAS, Worldwide Fruit/Qualytech, UK.
    15. Damalas C. A., Eleftherohorinos I. G., 2011.- Pesticide exposure, safety issues, and risk assessment indicators.- International Journal of Environmental Research and Public Health, 8: 1402-1419.
    16. Damos P., Savopoulou-soultani M., 2012a.- Microlepidoptera of economic significance in fruit production: challenges, constrains and future perspectives for integrated pest management, pp. 75-113. In: Moths: types, ecological significance and control methods (CAUTERUCCIO L., Ed.).- Nova Science Pub Inc, New York, USA.
    17. Damos P., Savopoulou-soultani M., 2012b.- Temperaturedriven models for insect development and vital thermal requirements.- Psyche, 2012: 123405.
    18. Damos, P., Colomar, L. A. E., and Ioriatti, C. (2015). Integrated fruit production and pest management in Europe: the apple case study and how far we are from the original concept?. Insects, 6(3), 626-657.
    19. Damos, P. T., Kouloussis, N. A., and Koveos, D. S. (2018). A degree-day phenological model for Cydia pomonella and its validation in a Mediterranean climate. Bull. Insectol, 71, 131-142.
    20. Daneshnia, S. N., Alichi, M. and Heidari, B. 2012. Determining the appropriate spray time for Cydia pomonella (Lep.: Totricidae) in apple orchards using sex pheromone and degree day in Khanehzenyan, Fars. Plant Protection Journal, 4: 44-37.
    21. Fallahzadeh, M. M., Shojaei, M., Tabrizian, V. and Ostovan, H. 2000. The effect of the color of the trap, trap type, dose per capsule formulated pheromone traps and high efficiency of pheromone traps in apple moth Cydia pomonella (Lep.: Tortricidae). Journal of Agricultural Sciences, 6 (1121): 90-77.
    22. Hatami, B. 1992. Manual for field Trials in plant protection. 233 pp.
    23. Hill, R. L and Gouraly, A. H. 2002. Host rang testing, introduction and establishment of Cydia succedana (Lep: Tortricidae) for biological control of gorse, Ulex europaeus in New Zealand. Journal of Academic Press Biological Control, 25: 173-186.
    24. Hosseinzadeh, J., Farazmand, H., Majdiafshar, M. and Abasi Chobtarash, m. 2015. Determining the appropriate spray time to control Cydia pomonella L. (Lep., Totricidae) in apple orchards using sex pheromone traps and degree-day method in Urumia. Journal of Entomological Research. 9(2): 173-184.7
    25. Keil, S., GU, H. and Doren, S. 2001. Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecological Entomology, 26: 495-501.
    26. Keliaie, R. 2009. Adverse effects of eight combinations of insecticides used against apple wines, the creation of high blight and apple fruit. Journal of Plant Pests and Diseases, 77: 128-115.
    27. Knight A. L., 2007. Adjusting the phenology model of codling moth (Lepidoptera: Tortricidae) in Washington state apple orchards.- Environmental Entomology, 36: 1485-1493.
    28. Kot, I. (2010). Monitoring of codling moth (Cydia pomonella L.) in apple orchards using two methods. Journal of plant protection research, 50(2), 220-223.
    29. Park, S. C. and Foster, S. P. 1998. Comparative sex pheromone – associated behavior of Planotortix notophae (Lep: Tortricidae). Journal of Asia–Pacific Entomology, 1(1): 91-98.
    30. Prues K. P., 1983- Day-degree methods for pest management. Environmental Entomology, 12: 613-619.
    31. Rajabi, G. R. 1985. Insects Attacking of Rosaceous Fruit Trees in Iran. Iranian Research Institute of Pest and Disease of Plant, Tehran. 209 p.
    32. Rajabi, G. R., Malmir, A. and Naderian, H. 2006. Comparative study of number of generation, flight span and population density of codling moth in walnut and apple orchards in various altitudes of Iran. Journal of Pest and Disease of Plants, 2: 1-12.
    33. Ranjbar Aghdam, H. and Ataran, M. R. 2015. Biological control of Cydia pomonella (L.) using parasitoid wasps Trichogramma embryophagum Based on forecasting model time and temperature. Journal of Biological control of pests and plant diseases, 3(2): 87-69.
    34. Samietz, J., Graf, B., Höhn, H., Schaub, L., and Höpli, H. U. (2007). Phenology modelling of major insect pests in fruit orchards from biological basics to decision support: the forecasting tool SOPRA. EPPO bulletin, 37(2), 255-260.
    35. Seraj, A. A. 2011. Principles of Plant Pests Control. Shahid Chamran University Press, Ahvaz, 711pp.
    36. Shojaei, M. M., Esmaeili, H., Ostovan, A. R., Khadaman, M., Daniali, M., Hosseini, Y., Asadi, M., Sedighfar, M. A., Koroshnezhad, A. A., NasrAllahi, Y., Labafi, M., Azma, F., Ghavam, V. and Honarbakhsh, S. 2000. Integrated management of potato cream and other pests of pome fruits. Journal of Agricultural Sciences, 6 (2 (122)): 45-15.
    37. Statistical annual review of Razavi Khorasan agricultural section. 2012. Agricultural Jihad organization of Khorasan Razavi, Vice President of planning and Economic Affairs, the office of agricultural statistics and information. 219 pp.
    38. Wang, S., Ikediala, J. N., Tang, J. and Hansen, J. D. 2002. Thermal death kinetics and heating rate effects for fifth-instar codling moths Cydia pomonella (L.). Journal of Stored Products Research, 38: 441–453.
    39. Welch S. M., Croft B. A., Brunner J. F., Michels M. F., 1978.- PETE: an extension phenology modeling system for management of multi-species pest complex.- Environmental Entomology, 7: 487-494.