مطالعه روند تغییرات فصلی و سالانه بارش با روش رگرسیون چندک (مطالعه موردی: ایستگاه هاشم‌آباد گرگان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران، گرگان

2 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشجوی دکترای علوم و مهندسی آب-منابع آب، دانشگاه ارومیه

چکیده

بارش یکی از متغیرهای هواشناسی است که مقدار آن در زمان و مکان از تغییرات زیادی برخوردار است و بر بسیاری از پدیده‌ها و رویدادها در زمینه‌های کشاورزی، محیط‌زیست، منابع ‌طبیعی، فعالیت‌های بشری  مؤثر است. لذا با توجه به تأثیرپذیری انسان و محیط‌زیست از بارش، می‌بایست هرگونه تغییر در این عوامل در طول زمان مورد بررسی قرار گیرد. از روش‌های مرسوم جهت بررسی روند در سری داده‌ها، استفاده از آزمون من‌کندال می‌باشد. در صورتی‌که سری داده‌ها متشکل از وقایعی با شدت‌ها و مقادیر مختلف می‌باشد،  لازم است تا دهک‌ها یا صدک‌های سری به منظور تغییر احتمالی مورد بررسی قرارگیرد. بنابراین در این پژوهش، در کنار آزمون من‌کندال و رگرسیون خطی معمولی، از روش رگرسیون چندک نیز  برای بررسی روند فصلی و سالانه بارش در ایستگاه سینوپتیک هاشم‌آباد گرگان در طول سال‌های ۱۳۹۶-۱۳۶۳ (۲۰۱۷-۱۹۸۴ میلادی) استفاده گردید. نتایج آزمون من‌کندال حاکی از وجود روند کاهشی معنی‌دار بارش تنها در فصل بهار می‌باشد. بررسی مقایسه‌ای نتایج روش‌های من-کندال و رگرسیون خطی معمولی نشان می‌دهد که هر دو روش جهت تغییرات را به طور مشابه نشان می‌دهند اما بزرگی تغییرات در روش من-کندال بیشتر از روش رگرسیون خطی می‌باشد.  نتایج رگرسیون چندک نشان می‌دهد که تمام چندک‌ها در یک سری زمانی، از شیب یکسانی تبعیت نمی‌کند و حتی ممکن است در یک سری، برخی چندک‌ها دارای شیب افزایشی و برخی دارای شیب کاهشی باشند. همچنین نتایج نشان داد که از نظر معنی‌داری شیب، در فصل بهار، چندک‌های میانی شیب کاهشی ولی در فصل‌ تابستان، چندک‌های بالایی شیب افزایشی دارند. در فصل پاییز چندک‌های پایینی دارای روند کاهشی و در فصل زمستان چندک‌های میانی روند کاهشی، اما چندک‌های بالایی روند افزایشی  دارند و همچنین در سری سالانه بارش، چندک‌های پایینی دارای شیب کاهشی بارش می‌باشند که به طور کلی می‌توان اظهار داشت که بر ترسالی‌های شدید و خشکسالی‌های شدید افزوده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Seasonal and Annual Rainfall Changes with Quantile regression method (Case Study: Gorgan Hashem-Abad Station

نویسندگان [English]

  • Sedighe Bararkhanpour 1
  • Khalil Ghorbani 2
  • Meysam Salari Jazi 3
  • Laleh Rezaei Ghaleh 4
1 Department of Water Engineering, College of Soil and Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Iran, Gorgan
چکیده [English]

Abstract
Introduction: Precipitation is an important meteorological variable throughout time and place, and affects many phenomena and events in the contexts of agriculture, environment, natural resources, human activities, and etc. The study of variations in precipitation at different time scales is of great importance. Investigating precipitation’s seasonal time scale can be indicative of the variation pattern of this variable within a year, and its interpretation is beneficial in understanding both the patterns of wet and dry periods within a year and also seasonal hydrological components, while the investigation of annual time scale in a region can significantly be effective in better understanding the changes in the hydrological cycle in the studied area. Therefore, understanding the variability of hydrological processes and their associated statistics is essential for better water resource management.
 Also, the changes in when the precipitation begins, can cause variations in the length of wet and dry periods. According to the impacts climate variables have on human and environment, it is necessary to review any changes in these variables over time. The use of the non-parametric Mann-Kendall test to examine the trend in the data series is a common method, which the analysis derived from it can lead to an initial understanding to find out whether the data is random (with no trend) or a trend exists within the data series being studied, but to better understand changes in a variable over time, it is better to examine the changes in different quantiles. The data series consists of events of varying intensities and quantities, and it is therefore necessary to study the deciles or percentiles of the series in order to investigate the aligned or non-aligned probability change. For this purpose, a quantile regression is suggested. In this study seasonal and annual precipitation of the Hashem Abad station in Gorgan was studied.
Materials and Methods: The study area is the synoptic meteorological station of Hashem Abad, Gorgan, with an average annual rainfall of 550 mm and an average temperature of 18 ° C, which has a Mediterranean climate. At this station, weather data have been collected since the year 1984. In this study, precipitation data was used by the end of year 2017. After the establishment of seasonal and annual time series, non-parametric Mann-Kendall tests, Sen slope and quantile regression tests were performed and the results were compared.
 Results and Discussion: The results of the Mann-Kendall test and ordinary linear regression showed that the precipitation has a significant decreasing trend only in spring, and the remaining seasons as well as the annual precipitation are of no trend. But the quantile regression shows a number of different results, so that not all the quantiles do follow the same slope in a time series, and even in a series, some of the quantiles have an increasing slope while others have a decreasing slope. In the spring, the mid-range quantiles have a significant decreasing slope, but in the rest of quantiles, there is a decreasing and non-significant slope. In the summer, the upper quantiles are of increasing slope while lower and mid-range quantiles have decreasing slope, and these slopes confirm the existence of a significant increasing statistical trend in only extreme upper quantiles.
In the autumn, in many quantiles, there is an increasing positive slope, and only in the extreme lower and upper quantiles a decreasing and negative slope is visible. These slopes show a significant decreasing trend in the extreme lower quantiles. In the winter, in the upper quantiles, show an increasing and positive slope, but in the mid-range and lower quantiles, demonstrate a decreasing and negative slope. These slopes are statistically significant in many quantiles. On an annual scale, like the winter, the upper quantiles are of increasing slope and the lower and mid-range quantiles are of decreasing slope. These slopes are non-significant in many cases, and only in extreme lower quantiles a significant decreasing trend exists.
 Comparison of the existing significant trends using different regression methods suggests that the quantile regression method is considered to be useful in estimating extreme precipitations trend that cannot be evaluated by the Mann-Kendall and ordinary linear regression methods.
 Final conclusion: A comparative study of the results of the Mann-Kendall and ordinary linear regression methods shows that both methods depict the similar variations, but the magnitude of the variations in the Mann-Kendall method is estimated more than linear regression. Also, the results of this study indicate that changes in different quantiles of data may have a significant difference in direction and quantity with the changes in the mean or average of data, and therefore, it is necessary to study and analyze the quantile regression method in order to properly understand the changes in time series of seasonal and annual precipitation data.

کلیدواژه‌ها [English]

  • Precipitation
  • quantile regression
  • Mann-Kendall
  • Ordinary linear regression
  1.  

    1. Akbari, M. and V. Nodehi, 2015,  Analysis of Trends in Annual and Summer Rainfall of Golestan Province. Journal of Space Geography, Vol. 5, No. 17, PP. 141-150 (In Persian).
    2. Amirrezaeieh, A.R., J. Porhemmat  and F. Ahmadi, 2017, Investigation of Precipitation and Temperature Trend Across the North West of Iran in Recent half of the Century. Iranain Journal of Irrigation and Drainage, Vol. 10, No. 6, pp. 797-809 (In Persian).
    3. Amran, B. and B. Anisa,  2017, Trend Analysis of Precipitation Extreme Related to Climate Change in Province Sulawesi Selatan, Indonesia. International Journal of Applied Engineering Research ISSN, Vol. 12, No. 21, PP. 11035-11038.
    4. Bagherpoor, M., S.M. Seyedian, A. Fathabadi and H. Mohammadi, 2017, Investigation of Mann-Kendall Test Performance in Detecting the Series of Autocorrelation. Journal of Iran-Watershed Management Science & Engineering, Vol. 11, No. 6, PP. 11-22 (In Persian).
    5. Bhuyan, D.I., M. Islam and E.K. Bhuiyan, 2018,  A Trend Analysis of Temperature and Rainfall to Predict Climate Change for Northwestern Region of Bangladesh.  American Journal of Climate Change, Vol. 7, PP. 115-134.
    6. Chen, D., A. Walther, A. Moberg, P.D. Jones, J. Jacobeit and D. Lister, 2015,  European Trend Atlas of Extreme Temperature and Precipitation, Springer: Dordrecht; Heidelberg; New York, NY, and London; 178, doi: 10.1007/978-94-017-9312-4.
    7. Dadashiroudbari, A.A. and M. Keykhosravikiani, 2016,  Analysis of The Spatial and Temporal Trend of Annual Rainfall in Iran During 1950-2007.  Journal of Environmental and Water Engineering, Vol. 2, No. 2, PP. 111-121 (In Persian).
    8. Fatahi, F. 2005, Bayesian Quantile Regression. Master's thesis, Tarbiat Modarres University. 
    9. Fan, L. and D. Chen, 2016, Trends in extreme precipitation indices across China detected using quantile regression. Atmospheric Science Letters, Vol. 17, PP. 400-406.
    10. Feng, G., S. Cobb, Z. Abdo, D. Fisher, Y. Ouyang, A. Adali and J. Jenkins, 2016, Trend Analysis and Forecast of Precipitation, Reference Evapotranspiration, and Rainfall Deficit in the Blackland Prairie of Eastern Mississippi. Journal of Applied Meteorology And Climatology, Vol. 55, PP. 1425-1439.
    11. Friederichs, P. and A. Hense, 2007, Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression. Journal of American Meteorological Society, Vol. 135, PP. 2365-2378.
    12. Greenville, A.C., M. Glenda,  G.M. Wardle and C.R. Dickman, 2012, Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature. Journal Ecology and Evolution, Vol. 2, No. 11, PP. 2645–2658.
    13. Hamed, K.H. and A.R. Rao, 1998, A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, Vol. 204, PP. 182–196.
    14. Isioma, I.N., I.I. Rudolph and A.L. Omena, 2018, Non-parametric Mann-Kendall Test Statistics for Rainfall Trend Analysis in Some Selected States within the Coastal Region of Nigeria. Journal of Civil, Construction and Environmental Engineering, Vol. 3, No. 1, PP. 17-28.
    15. Kendall, M.G. 1975, Rank Auto-correlation Methods, Charles Griffin, London.
    16. Koenker, R. and G. Bassett, 1978, Regression Quantiles. Econometrica, Vol. 46, PP, 33-50.
    17. Koenker, R. 2005, Quantile Regression, first ed, New York, Cambridge University Press, 2005, 1-25.
    18. Koenker, R. 2006, Quantile regression in R: A vignette. [Available online at http://www.econ.uiuc.edu/~roger/research/rq/vig.pdf.]
    19. Lee, K., H. Beak and C. Cho, 2013, Analysis of Changes in Extreme Temperatures Using Quantile Regression. Korean Meteorological Society, Vol. 49, PP. 313-323.
    20. Mann, H.B. 1945, Nonparametric Tests Against Trend, Econometrica. Journal of the Econometric Society, PP. 245-259.
    21. Marofi, S., H. Tabari and A. Aini, 2011, Investigating the process of time variation and spatial characteristics of rainfall and meteorological droughts in the west of the country, Over the past few decades.  Journal of Water Science and Engineering, Vol. 1, No. 3, PP. 55-72 (In Persian) .
    22. Mohammadi, H,. GH. Azizi, F. Khoshakhlagh and F. Rangbar, 2017, Analysis of Daily Precipitation Extreme Indices Trend in Iran. Journal of Natural Geography Research, Vol. 49, No. 1, PP. 21-37 (In Persian).
    23. Mondal, A., S. Kundu, and A. Mukhopadhyay, 2012, Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and Environmental Sciences ISSN, Vol. 2, PP. 70-78.
    24. Pandit, D.V. 2016, Seasonal Rainfall Trend Analysis. Journal of Engineering Research and Application, Vol. 6, No. 7, PP. 69-73.
    25. Roth, M., T.A. Buishand and G. Jongbloed, 2015, Trends in Moderate Rainfall Extremes: A Regional Monotone Regression Approach. Journal of Climate, Vol. 28, PP. 8760-8769.
    26. So, B. and H.H. Kwon, 2012, Trend Analysis of Extreme Precipitation Using Quantile Regression. Journal of Korea Water Resources Association, Vol. 8, PP. 815-826.
    27. Sohrabi, M.M., S. Maroufi, A.A. Sabzi Parvar and Z. Marianji, 2009, Investigating the trend in annual rainfall in Hamedan province using the Man Kendall method (short scientific report). Journal of Water and Soil Conservation, Vol. 16, No. 3, pp. 163-169 (In Persian).  
    28. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and  H.L. Miller, 2007, Climate Change , The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, New York.
    29. Xuan, Y., S.A. Abbas, X. Song and D.E. Reeve, 2017, Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions. Journal of European Water, Vol. 59, PP. 137-143.
    30. Zhang, X., L.A. Vincent, W.D. Hogg and A. Niitsoo, 2000, Temperature and rainfall trends in Canada during the 20th century. Atmospheric Ocean, Vol. 38, PP. 395-429.